Optical Properties of Metal Free and Metal Phthalocyanine by Molecular Band Calculation

Article Preview

Abstract:

The optical properties of metal-free and metal phthalocyanine were calculated by using density functional theory with various metals including copper, zinc, cobalt, iron and manganese. The polymorphic form of these crystals was employed only for β from. The molecules were optimized with the symmetry of D4h. For the alignments of the molecule in the crystal structures of this polymorphic form which have not been reported in detail, the variation of total energy was examined as a function of the align angles. The align angle at minimum total energy was used for the band calculation. The density functional theory and plane-wave pseudopotential method were used to calculate the energy band structure and electron density of state. The calculated band structures of various metal phthalocyanines can be divided in two groups according to the peak wavelength of the maximum absorption. The first group with the peak wavelength at about 230 nm consists of β-CuPc, β-H2Pc, and β-MnPc while the wavelength of another group for β-CoPc, β-FePc, and β-ZnPc occurs at 350 nm. From the density of state calculation, it indicates that these two transitions originate from the different band and the ratio of the absorption between these states depending on the type of metal in phthalocyanine. The optical absorption was derived to examine the absorption spectra for various metal compositions while the variation in intrinsic electrical conductivity can be estimated from the shape of the band. The phonon and infrared spectra were also determined in order to investigate the vibration mode of molecule in the crystals

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 55-57)

Pages:

677-680

Citation:

Online since:

August 2008

Export:

Price:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation: