Structural and Dielectric Properties of BaTi1-xSnxO3 Ceramics

Article Preview

Abstract:

BaTi1-xSnxO3 (BTS) powders, with x ranging from 0 to 1, were synthesized by solid-state reaction technique. The powders were pressed into pellets and sintered at 1370 and 1420 oC. The structural characterization of sintered BTS samples was made at room temperature using X-ray diffraction and Raman spectroscopy measurements. The BTS samples were found to be singlephase solid solutions. Dielectric properties of sintered BTS samples were studied as a function of sintering temperatures and tin contents, too. For samples with x ranging from 0 up to 0.15, it has been found that the Curie temperature decreases while the maximum of the dielectric constant increases with increasing tin content. These samples have relatively high dielectric constants, contrary to x > 0.2 samples with very low dielectric constants. It is noticed that BTS ceramics sintered at 1420 oC exhibit better dielectric properties than those sintered at 1370 oC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

241-246

Citation:

Online since:

July 2006

Export:

Price:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. -H. Jeon: J. Eur. Ceram. Soc. Vol. 24 (2004), p.1045.

Google Scholar

[2] J. -H. Jeon, Y. -D. Hahn and H. -D. Kim: J. Eur. Ceram. Soc. Vol. 21 (2001), p.1653.

Google Scholar

[3] W. -K. Chang, S. -F. Hsien, Y. -H. Lee, K. -N. Chen, N. -C. Wu and A.A. Wang: J. Mat. Sci. Vol. 33 (1998), p.1765.

Google Scholar

[4] N. Yasuda, H. Ohwa and S. Asano: Jpn. J. Appl. Phys. Vol. 35 (1996), p.5099.

Google Scholar

[5] R. Farhi, M. El Marssi and A. Simon: J. Ravez, Eur. Phys. J. B Vol. 9 (1999), p.599.

Google Scholar

[6] N. Yasuda, H. Ohwa and K. Arai: J. Mat. Sci. Letters Vol. 16 (1997), p.1315.

Google Scholar

[7] F.D. Morrison, D.C. Sinclair and A.R. West: J. Appl. Phys. Vol. 86 (1999), p.6355.

Google Scholar

[8] N.S. Novosiltsev and A.L. Khodakov: Zh. Tekh. Fiz. Vol. 22 (1956), p.310.

Google Scholar

[9] G.A. Smolenskii, V.A. Bokov, N.N. Isupov, V.A. Krainik, R.E. Pasynkov and М.S. Shur: Ferroelectrics and anti-ferroelectrics (Izd. Nauka, Leningradskii Otdeleniye, Leningrad 1971), pp.355-369 (in Russian).

Google Scholar

[10] V. Muller, H. Beige, H. -P. Abicht and C. Eisenschmidt: J. Mater. Res. Vol. 19 (2004), p.2834.

Google Scholar

[11] R. Steinhausen, A. Kouvatov, H. Beige, H.T. Langhammer and H. -P. Abicht: J. Eur. Ceram. Soc. Vol. 24 (2004), p.1677.

Google Scholar

[12] U. Straube, H.T. Langhammer, et al.: J. Eur. Ceram. Soc. Vol. 19 (1999), p.1171.

Google Scholar

[13] V. Mueller, L. Jager, H. Beige, et al.: Solid State Comm. Vol. 129 (2004), p.757.

Google Scholar

[14] R.D. Shannon and C.T. Prewitt: Acta Cryst. B Vol. 25.

Google Scholar

[5] (1969), p.925.

Google Scholar

[15] D.E. Rase and R. Roy: J. Am. Ceram. Soc. Vol. 38 (1955), p.102.

Google Scholar

[16] T.J. Parker and C.J. Burfoot: Brit. J. Appl. Phys Vol. 17 (1966), p.207.

Google Scholar

[17] Y. -I. Kim, J.K. Jung and K. -S. Ryu: Mat. Res. Bull. Vol. 39 (2004), p.1045.

Google Scholar

[18] M. DiDomenico, S.H. Wemple, S.P.S. Porto and R.P. Bauman: Phys. Rev. Vol. 174 (1968), p.522.

Google Scholar

[19] S.W. Lu, B.I. Lee, Z.L. Wang and W.D. Samuels: J. Cryst. Growth Vol. 219 (2000), p.269.

Google Scholar