Characterisation and Object-Oriented Finite Element Modelling of Polypropylene/ Organoclay Nanocomposites

Article Preview

Abstract:

Although much research work has been conducted on the production and characterisation of polypropylene/organoclay nanocomposites, the effects of nanoscale fillers with respect to actual morphology through numerical modelling have been rarely addressed. This paper describes a unique development from fabrication and experimental characterisation to the numerical modelling of polypropylene/organoclay nanocomposites based on the real mapping of nano/microstructures. Twin screw extrusion is used with a two-step masterbatch compounding method to prepare such nanocomposites with organoclays (ranging between 1wt% and 10wt%) and maleated polypropylene (1:1 weight ratio). The material characterisation using X-ray diffraction (XRD), scanning electron microscopy (SEM) and dynamic mechanical analysis (DMTA) are conducted and mechanical properties are determined by tensile, flexural and impact tests. Finally, computational models are established by using an innovative object-oriented finite element analysis code (OOF) to predict the overall mechanical properties of nanocomposites.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 334-335)

Pages:

841-844

Citation:

Online since:

March 2007

Export:

Price:

[1] P.B. Messersmith, E.P. Giannelis: J. Polym. Sci., Part A 33 (1995), pp.1047-1057.

Google Scholar

[2] Y. Kojima, A. Usuki, A. Okada, T. Kurauchi, O. Kamigaito: J. Mater. Res. 8 (1993), pp.1179-1184.

Google Scholar

[3] J.W. Gilman: Appli. Clay Sci. 15 (1999), pp.31-49.

Google Scholar

[4] W. Lertwimolnun, B. Vergnes: polymer 46(2005), pp.3462-3471.

Google Scholar

[5] N. Hasegawa, M. Kawasumi, M. Kato, A. Usuki, A. Okada:J. Appl. Polym. Sci. 67(1998), pp.87-92.

Google Scholar

[6] Y. Wang, F. B. Cheng, K.C. Wu: J. Appl. Polym. Sci. 93(2004), pp.100-112.

Google Scholar

[7] S.G. Lei, M. ASc thesis, Concordia University, Montreal, Quebec, Canada (2003).

Google Scholar

[8] S.A. Langer, E.R. Fuller Jr, W.C. Carter,: Comput. Sci. Eng. 3 (2001), pp.15-23.

Google Scholar

[9] S.A. Langer, A.C.E. Reid, S.I. Haan, R.E. Garcia, The OOF2 manual, National Institute of Standards and Technology, US. http: /www. ctcms. nist. gov/~langer/oof2man/index. html.

Google Scholar

[10] M. Avella, F. Bondioli, V. Cannillo, M.E. Errico, A.M. Ferrari, B. Focher, M. Malinconico, T. Manfredini and M. Montorsi: Mater. Sci. & Tech. 20 (2004), pp.1340-1344.

DOI: 10.1179/026708304225022278

Google Scholar

[11] V. Cannillo, F. Bondioli, L. Lusvarghi, M. Montorsi, M. Avella, M.E. Errico, M. Malinconico: Compos. Sci. &Tech. 66 (2006), pp.1030-1037.

DOI: 10.1016/j.compscitech.2005.07.030

Google Scholar

[12] T.D. Fornes, D.R. Paul: polymer 44 (2003), pp.4993-5013.

Google Scholar

[13] R.K. Shah, D.R. Paul: Polymer 47 (2006), pp.4075-4084.

Google Scholar

[14] S.P. Bao, S.C. Tjong: Composites Part A, in press (2006).

Google Scholar

[15] W. Voigt: Ann. Phys. 38 (1889), pp.573-587.

Google Scholar

[16] A. Reuss: ZAMM 9 (1929), pp.49-58.

Google Scholar

[17] J.C. Halpin, J.L. Kardos: Polym. Engng. Sci. 16 (1976), pp.344-352.

Google Scholar

[18] C.Y. Hui, D. Shia, Polym. Engng. Sci. 38 (1998), pp.774-782.

Google Scholar

[19] J. J. Luo, I. M. Daniel: Compos. Sci. and Tech. 63 (2003), pp.1607-1616.

Google Scholar