Microstructural Evolution of Synthetic Forsterite Aggregates Deformed to High Strain

Article Preview

Abstract:

Microstructures provide the crucial link between solid state flow of rock materials in the laboratory and large-scale tectonic processes in nature. In this context, microstructural evolution of olivine aggregates is of particular importance, since this material controls the flow of the Earth’s upper mantle and affects the dynamics of the outer Earth. From previous work it has become apparent that if olivine rocks are plastically deformed to high strain, substantial weakening may occur before steady state mechanical behaviour is approached. This weakening appears directly related to progressive modification of the grain size distribution through competing effects of dynamic recrystallization and syn-deformational grain growth. However, most of our understanding of these processes in olivine comes from tests on coarse-grained materials that show grain size reduction through dynamic recrystallization. In the present study we focused on fine-grained (~1 µm) olivine aggregates (i.e., forsterite/Mg2SiO4), containing ~0.5 wt% water and 10 vol% enstatite (MgSiO3), Samples were axially compressed to varying strains up to a maximum of ~45%, at 600 MPa confining pressure and a temperature of 950°C. Microstructures were characterized by analyzing full grain size distributions and textures using SEM/EBSD. We observed syndeformational grain growth rather than grain size reduction, and relate this to strain hardening seen in the stress-strain curves.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 467-470)

Pages:

579-584

Citation:

Online since:

October 2004

Export:

Price:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. I. Karato, M. S. Paterson and J. D. FitzGerald: J. Geoph. Res. Vol. 91 (1986), p.8151.

Google Scholar

[2] S. Mei and D. L. Kohlstedt: J. Geoph. Res. Vol. 105 (2000a), p.21457.

Google Scholar

[3] S. Mei and D. L. Kohlstedt: J. Geoph. Res. Vol. 105 (2000b), p.21471.

Google Scholar

[4] P. N. Chopra and M. S. Paterson: J. Geoph. Res. Vol. 89 B9 (1984), p.7861.

Google Scholar

[5] D. Van der Wal, P. Chopra, M. Drury and J. Fitz Gerald: Geoph. Res. Lett. Vol. 20 (1993), p.1479.

Google Scholar

[6] S. Zhang, S. -i. Karato, J. Fitz Gerald, U. H. Faul and Y. Zhou: Tectonophysics Vol. 316 (2000), p.133.

DOI: 10.1016/s0040-1951(99)00229-2

Google Scholar

[7] M. Bystricky, K. Kunze, L. Burlini and J. -P. Burg: Science Vol. 290 (2000), p.1564.

Google Scholar

[8] R. D. McDonnell, C. J. Spiers and C. J. Peach: Phys. Chem. Minerals Vol. 29 (2002), p.19.

Google Scholar

[9] R. D. McDonnell, C. J. Peach and C. J. Spiers: J. Geoph. Res. Vol. 104 (1999), p.17.

Google Scholar

[10] R. D. McDonnell: Deformation of fine-grained synthetic peridotite under wet conditions (Geologica Ultraiectina thesis, University Utrecht 1997).

Google Scholar

[11] M. A. Clark and T. H. Alden: Acta Metall. Vol. 21 (1973), p.1195.

Google Scholar

[12] M. F. Ashby and R. A. Verrall: Acta Mater. Vol. 21 (1973), p.149.

Google Scholar

[13] P. Bate: Acta Mater. Vol. 49 (2001), p.1453.

Google Scholar

[14] M. K. Rabinovich and V. G. Trifonov: Acta Mater. Vol. 44 (1996), p. (2073).

Google Scholar

[15] J. R. Seidensticker and M. J. Mayo: Acta Mater. Vol. 46 (1998), p.4883.

Google Scholar

[16] D. S. Wilkinson and C. H. Caceres: Acta Metall. Vol. 32 (1984), p.1335.

Google Scholar

[17] K. Holm, J. D. Embury and G. R. Purdy: Acta Metall. Vol. 25 (1977), p.1191.

Google Scholar

[18] M. Drury: Geol. Soc. Spec. Pub. Vol. - (2003), p. submitted.

Google Scholar

[19] G. Hirth and D. L. Kohlstedt: Rheology of the upper mantle and the mantle wedge: A view from the experimentalists, in: J. Eiler, (Ed), The subduction factory, Geophysical Monographs in press 2003), p. in press.

DOI: 10.1029/138gm06

Google Scholar

[20] K. -H. Lee, Z. Jiang and S. -i. Karato: Tectonophysics Vol. 351 (2002), p.331.

Google Scholar