Pulsed Electric Current Bonding of Tungsten to Copper with Intermediate Layer

Article Preview

Abstract:

Pulsed electric current sintering (PECS) was applied to the bonding of W (tungsten) to Cu (copper) using Nb or Ni powder as an intermediate layer. The influence of the intermediate layer on the bond strength of the joint was investigated by observation of the microstructure. The bonding process was carried out at carbon-die temperatures of 1073 and 1173 K for 1.8 ks at a bonding pressure of 130 MPa. The bond strength of the joint with an intermediate layer of Ni powder was 250 MPa. This joint fractured in the Cu base during the tensile test. SEM observations of the joint with an intermediate layer of Ni revealed that a diffusion layer formed at the joint interface.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 127)

Pages:

289-292

Citation:

Online since:

September 2007

Export:

Price:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

[1] I. Smid, M. Akiba, G. Vieider and L. Plochl: J. Nucl. Mater. Vol. 258-263 (1998), p.160.

Google Scholar

[2] V. Barabash, M. Akiba, A. Cardella, I. Mazul, B.C. Odegard Jr, L. Plochl, R. Tivey and G. Vieider: J. Nucl. Mater. Vol. 283-287 (2000), p.1248.

DOI: 10.1016/s0022-3115(00)00120-3

Google Scholar

[3] K. Sato, K. Ezato, M. Taniguchi, S. Suzuki and M. Akiba: J. Nucl. Sci. Technol. Vol. 42 (2005), p.643.

Google Scholar

[4] O. Ohashi, K. Matsushita and T. Watanabe: Quart. J. Jpn. Weld. Soc. Vol. 16 (1998), p.319.

Google Scholar

[5] G.S. Zou, J. Yang, A.P. Wu, G.H. Huang, D.K. Zhang, J.L. Ren and Q. Wang: J. Mater. Sci. Technol. Vol. 19, Suppl. 1 (2003), p.189.

Google Scholar

[6] C.B. Wang, Q. Shen, Z.G. Zhou and L.M. Zhang: J. Mater. Sci. Vol. 40 (2005), p.2105.

Google Scholar

[7] M. Aritoshi, K. Okita, K. Ikeuchi and M. Ushio: Quart. J. Jpn. Weld. Soc. Vol. 14 (1996), p.495.

Google Scholar

[8] M. Aritoshi, K. Okita, K. Ikeuchi and M. Ushio: Quart. J. Jpn. Weld. Soc. Vol. 20 (2002), p.309.

Google Scholar

[9] S. Saito, K. Fukaya, S. Ishiyama and K. Sato: J. Nucl. Mater. Vol. 307-311 (2002), p.1542.

Google Scholar

[10] M. Tokita: J. Soc. Powder Technol. Jpn. Vol. 30 (1993), p.790.

Google Scholar

[11] K. Nishimoto, K. Saida and R. Tsuduki: J. Japan Inst. Metals Vol. 65 (2001), p.288.

Google Scholar

[12] O. Ohashi, N. Yamaguchi and Y. Kayanuma: J. Jpn. Soc. Powder Powder Metall. Vol. 48 (2001), p.1000.

Google Scholar

[13] K. Nishimoto, K. Saida and R. Tsuduki: Sci. Technol. Weld. Joining Vol. 9 (2004), p.493.

Google Scholar

[14] H. Furuhata, N. Chikui and O. Ohashi: J. Japan Inst. Metals Vol. 68 (2004), p.511.

Google Scholar

[15] T. Nakamura, K. Hayakawa, S. Tanaka, H. Imaizumi and Y. Nakagawa: Mater. Trans. Vol. 46 (2005), p.292.

Google Scholar

[16] T. Nagaoka, K. Mizuuchi, M. Sugioka and M. Fukusumi: J. Japan Inst. Metals Vol. 69 (2005), p.727.

Google Scholar

[17] A. Nishimoto, K. Nakao, K. Akamatsu and K. Ikeuchi: J. Japan Inst. Metals Vol. 67 (2003), p.432.

Google Scholar

[18] H. Fujiwara, M. Tokuhara, K. Ameyama and S. Akishita: J. Soc. Mat. Sci. Japan Vol. 54 (2005), p.470.

Google Scholar