Molecular Dynamics Simulation of the Buckling Behavior of Boron Nitride Nanotubes under Uniaxial Compressive Loading

Article Preview

Abstract:

Boron Nitride nanotubes (BNNTs) together with carbon nanotubes (CNTs) have attracted the wide attention of the scientific community and have been considered as promising materials due to their unique structural and physical properties. In this paper, the behavior of BNNTs of different diameters under compressive loading has been studied through molecular dynamic (MD) simulations. We have used a Lennard-Jones pair potential to characterize the interactions between non-bonded atoms and harmonic potentials for bond stretching and bond angle vibrations. Results of the MD simulations determine the critical buckling loads of the BNNTs of various diameters under uniaxial compression, and indicate that for the simulated BNNTs of length L = 6 nm, the critical buckling loads increase by increasing the nanotube diameters.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 297-301)

Pages:

984-989

Citation:

Online since:

April 2010

Export:

Price:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Rubio, J.L. Corkill and M.L. Cohen: Phys. Rev. B Vol. 49 (1994), p.5081.

Google Scholar

[2] V. Raffa, G. Ciofani and A. Cuschieri: Nanotechnology Vol. 20 (2009), p.075104.

Google Scholar

[3] M. Griebel and J. Hamaekers: Comput. Mater. Sci. Vol. 39 (2007), p.502.

Google Scholar

[4] W.H. Moon, M.S. Son, J.H. Lee and H.J. Hwang: Phys. Stat. Sol. (B) Vol. 241 (2004), p.1783.

Google Scholar

[5] W.H. Moon and H.J. Hwang: Physics Letters A Vol. 320 (2004), p.446.

Google Scholar

[6] J.X. Zhao and Y.H. Ding: Nanotechnology Vol. 20 (2009), p.085704.

Google Scholar

[7] A.P. Suryavanshi, M.F. Yu, J. Wen, C. Tang and Y. Bando: App. Phys. Lett. Vol. 84 (2004), p.257.

Google Scholar

[8] X. Blase, A. Rubio, S.G. Louie and M.L. Cohen: Eur. Phys. Lett. Vol. 28 (1994), p.335.

Google Scholar

[9] S. Hu, Z. Li, X.C. Zeng and J.L. Yang: J. Phys. Chem. C Vol. 112 (2008), p.8424.

Google Scholar

[10] S.G. Hao, G. Zhou, W.H. Duan et al.: J. Am. Chem. Soc. Vol. 128 (2006), p.8453.

Google Scholar

[11] W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin, I.T. Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, and J.M. Kim: App. Phys. Lett. Vol. 75 (1999), p.3129.

Google Scholar

[12] B.H. Yan, C. Park, J. Ihm, G. Zhou, W.H. Duan and N. Park: J. Am. Chem. Soc. Vol. 130 (2008), p.17012.

Google Scholar

[13] H.J.C. Berendsen, D. van der Spoel and R. van Drunen: Comput. Phys. Commun. Vol. 91 (1995), p.43.

Google Scholar

[14] D.C. Rapaport: The Art of Molecular Dynamics Simulation (Cambridge University Press, New York 2004).

Google Scholar

[15] D. Frenkel and B. Smit: Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, London 2002).

Google Scholar

[16] H.J.C. Berendsen, and W.E. van Gunsteren, in Molecular Dynamics Simulations of Statistical Mechanics Systems, edited by G. Ciccotti and W.G. Hoover, North Holland, Amsterdam (1986).

Google Scholar

[17] H.J.C. Berendsen, J.P.M. Postma, W.F. Van Gunsteren, A. Dinola and J.R. Haak: J. Chem. Phys. Vol. 81 (1984), p.3684.

Google Scholar