Calibration Factor for Determination of Interstitial Oxygen Concentration in Germanium by Infrared Absorption

Article Preview

Abstract:

Intensities of infrared absorption due to asymmetric stretching vibrations of interstitial oxygen atoms in Ge crystals enriched with 16O and 18O isotopes have been compared with oxygen concentrations determined by means of secondary ion mass spectrometry (SIMS). For Ge samples with oxygen content less than 5⋅1017 cm-3 a good correlation has been found between the values of oxygen concentration and values of absorption coefficient in maximum of the absorption band at 855.6 cm-1 with a proportionality coefficient CO = 0.95.1017 сm-2. It is argued that kinetics of oxygen-related thermal double donor formation and oxygen loss upon heat-treatments of Ge crystals at 350 оС cannot be described properly with the application of calibration coefficient CO = 5.1016 cm-2, which is widely used for the determination of oxygen concentration in Ge crystals.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 108-109)

Pages:

735-740

Citation:

Online since:

December 2005

Export:

Price:

[1] Germanium Silicon: Physics and Materials, Semiconductors and Semimetals Vol. 56, edited by R. Hull and J.C. Bean (Academic Press, san Diego, 1999).

Google Scholar

[2] J. Bloem, C. Haas, P. Penning: J. Phys. Chem. Sol. Vol. 12 (1959), p.22.

Google Scholar

[3] H.J. Millett, L.S. Wood, G. Bew: Brit. J. Appl. Phys. Vol. 16 (1965), p.1593.

Google Scholar

[4] W. Kaiser, C.D. Thurmond: J. Appl. Phys. Vol. 32 (1961), p.115.

Google Scholar

[5] G.I. Alexandrova, L.I. Goncharov, M.A. Ilyin, E.P. Rashevskaya, P.A. Leonov and A.M. Chorvat: Zavodskaja laboratoriya Vol. 42 (1976), p.1079.

Google Scholar

[6] Oxygen in Silicon: Semiconductors and Semimetals Vol. 42, edited by R.K. Willardson, E.R. Weber and A.C. Beer (Academic Press, 1994).

Google Scholar

[7] N. Fukuoka, K. Atobe, M. Honda and K. Matsuda: Jap. J. Appl. Phys. Vol. 30 (1991), p.784.

Google Scholar

[8] P. Clauws: Material Science and Eng. Vol. B36 (1996), p.213.

Google Scholar

[9] B. Pajot, P. Clauws, J.L. Lindström and E. Artacho: Phys. Rev. Vol. B62 (2000), p.10165.

Google Scholar

[10] V.V. Litvinov, G.V. Palchik and V.I. Urenev: Phys. Stat. Sol. Vol. 108(1988), p.311.

Google Scholar

[11] V.P. Markevich, L.I. Murin, V.V. Litvinov, A.A. Klechko and J.L. Lindstrom: Physica B: Condensed Matter Vols. 273-274(1999), p.570.

DOI: 10.1016/s0921-4526(99)00575-x

Google Scholar

[12] A.L. Beach and W.G. Gouldner: Am. Soc. Testing Materials Spec. Tech. Publ. (1958), p.222.

Google Scholar

[13] P. Clauws and P. Vanmeerbeek: Physica B: Condensed Matter Vols. 273-274(1999), p.557.

DOI: 10.1016/s0921-4526(99)00572-4

Google Scholar

[14] L.I. Murin, J.L. Lindstrom, V.P. Markevich, T. Hallberg, V.V. Litvinov, J. Coutinho, R. Jones, P.R. Briddon and S. Oberg: Physica B: Condensed Matter Vol. 308-310 (2001), p.290.

DOI: 10.1016/s0921-4526(01)00700-1

Google Scholar

[15] Y.J. Lee, J. Boehm and R.M. Nieminen: Phys. Rev. B Vol. 66(2002), p.165221.

Google Scholar

[16] S.A. McQuaid, M.J. Binns, C.A. Londos, J.H. Tucker, A.R. Brown and R.C. Newman: J. Appl. Phys. Vol. 77(1995), p.1427.

Google Scholar