Papers by Author: C.S. Leo

Paper TitlePage

Abstract: Recently, material removal utilising electrokinetic phenomenon was proposed as an alternative to create material removal at the nanometric level [1]. The concept of the introduced material removal process is to impinge particles contained in the slurry, under the influence of hydrodynamic and electrokinetic effects, onto the workpiece with a predetermined velocity to create material removal on the surface. The material removal process proved to be feasible where the material removal rate was reported to be in the range of a few hundred nm/hr with a surface roughness of a few nm (RMS). This paper aims to look into the effect of the electrochemical dissolution on the material removal process since high voltages are involved during the material removal process. During the experimental study, electrochemical dissolution was observed and it contributed a certain proportion of the material removal process. However, the main material removal mechanism still relies on the mechanical action of the abrasive particles on the surface of the workpiece to create material removal during the process.
873
Abstract: With the demand for precise nanometric material removal with minimal defects, several non-contact ultraprecision machining techniques were developed over recent decades. The electrokinetic material removal technique [1] is one such method that allows material to be removed without any physical contact between the tool and the workpiece. In this work, the influence of the slurry mixture on the material removal rate for the electrokinetic material removal process is studied. During the process, it was observed experimentally that the mixture of the slurry affected the material removal rate. The parameters varied in the slurry mixture experiments were the size and concentration of the particles. Explanations for the behaviour of the material removal rate were also suggested during the study to further understand the electrokinetic material removal technique.
27
Showing 1 to 2 of 2 Paper Titles