Papers by Author: J.R. Yates

Paper TitlePage

Abstract: Digital Image Correlation (DIC) together with in-situ tensile testing has been used to measure in DP1000 steel the evolution of plastic strains at the microstructure scale. Interrupted tensile tests were performed on specially designed samples and scanning-electron micrographs were taken at regular applied strain intervals. Patterns defined by the microstructural features of the material have been used for the correlation carried out using LAVision software. The full field strain maps produced by DIC show a progressive localisation of deformation into bands at about 45o with respect to the loading direction. Plastic strains as high as 130% have been measured within the ferrite phase.
201
Abstract: Optical techniques for displacement measurements have become more common in recent years. The current preferred technique is digital image correlation (DIC) which works very well but has limitations for measuring diametral contractions in cylindrical specimens using a standard 3D system. To overcome the limitations of using either a diametral clip gauge or standard 3D DIC, a method has been developed for measuring diametral contractions simultaneously in two directions using a standard 3D DIC system in conjunction with an edge detection algorithm. Results have shown the method to work well.
141
Abstract: Little work has been published concerning the transferability of Gurson’s ductile damage model parameters in specimens tested at different strain rates and in the rolling direction of a Grade A ship plate steel. In order to investigate the transferability of the damage model parameters of Gurson’s model, tensile specimens with different constraint level and impact Charpy specimens were simulated to investigate the effect of the strain rate on the damage model parameters of Gurson model. The simulations were performed with the finite element program ABAQUS Explicit [1]. ABAQUS Explicit is ideally suited for the solution of complex nonlinear dynamic and quasi–static problems [2], especially those involving impact and other highly discontinuous events. ABAQUS Explicit supports not only stress–displacement analyses but also fully coupled transient dynamic temperature, displacement, acoustic and coupled acoustic–structural analyses. This makes the program very suitable for modelling fracture initiation and propagation. In ABAQUS Explicit, the element deletion technique is provided, so the damaged or dead elements are removed from the analysis once the failure criterion is locally reached. This simulates crack growth through the microstructure. It was found that the variation of the strain rate affects slightly the value of the damage model parameters of Gurson model.
19
Abstract: The fatigue life of metallic materials is strongly influenced by crack closure effects. Finite element (FE) methods allow the study of crack closure with great detail and can provide valuable information about phenomena occurring in the bulk of the material. In this work the distribution of stresses through the thickness of a cracked specimen has been studied using 3D FE simulations. It was found that the transition between the interior of the specimen (plane strain) and the surface (plane stress) differs from that predicted by 2D plane stress models. In addition, an attempt is presented to experimentally validate the results at the surface level. For this purpose full-field image correlation technique was utilized. This allowed direct comparison between the displacement field predicted by the numerical simulations and the experimental results measured by digital image correlation.
369
Abstract: A novel methodology based on a combination of experimental and analytical methods is used for monitoring the stress intensity factor in fatigue cracks subjected to constant amplitude loads. Full-field displacement information is fitted, following a multi-point over-deterministic approach, to an analytical model. This is developed from Muskhelishvili’s complex formulation. The methodology allowed accurate monitoring of the stress intensity factor during three fatigue cycles when small-scale yielding conditions were achieved. Moreover for larger loads where important plastic deformation occurs around the crack tip, Dugdale’s correction accounted for the differences between theoretical and calculated stress intensity factors. Accordingly the tool provides an indirect approach for measuring crack tip plasticity. Due to the fact that image correlation is relatively simple to use and is a non-contacting technique, the approach pioneered in this work seems ideal for monitoring fatigue cracks in industrial applications.
341
Abstract: Charpy upper shelf energy is widely used as a fracture controlling parameter to estimate the crack arrest/propagation performance of gas transportation pipeline steels. The measurement of this fracture criterion particularly for modern steels and its apportion into different components, i.e. fracture and non-related fracture energy, are of great importance for pipeline engineers. This paper presents the results of instrumented Charpy impact experiments on high-grade pipeline steel of grade X100. First, the instrumentation technique including the design and implementation of a strain gauge load-cell and the details of the data-recording scheme are reviewed. Next, the experimental data obtained from the Charpy impact machine so instrumented are presented and discussed. These include the test data from full and sub-sized Charpy V-notched specimens. The instrumented Charpy machine was able to capture the load history in full during the fracture process of the test specimens resulting in a smooth load-time response. This eliminated the need for filtering used in similar test techniques. From the recorded test data the hammer displacement, impact velocity and fracture energy were numerically calculated. The results showed that there was a significant drop in hammer velocity during the impact event. This resulted in a change in the fracture mode from dynamic to quasi-static which was more appreciable for full-size Charpy test samples. As a result, sub-sized specimens might be preferable for impact testing of this steel in order to guarantee the conditions of dynamic crack propagation in the specimen ligament. Accurate analysis of the instrumented impact test data showed that the ratio of crack initiation energy to propagation energy was around 30% for the X100 steel. It can be concluded that in impact testing of high-grade pipeline steel a significant portion of overall fracture energy is consumed in non-related fracture processes. This high fracture initiation energy should be accounted for if the current failure models are going to be used for toughness assessment of highstrength low-alloy gas pipeline steels.
369
Abstract: This paper reports recent results from a set of experimental and computational studies of ductile flat fracture in modern gas pipeline steel. Experimental data from plain and notched cylindrical tensile bars and standard C(T) specimens together with damage mechanics theories have been used to capture the flat fracture characteristics of a gas pipeline steel of grade X100. The modelling was via finite element analysis using the Gurson-Tvergaard modified model (GTN) of ductile damage development. The assumption of effective material damage isotropy was sufficiently accurate to allow the transfer of data from the notched bars to predict, in a 2D model, the crack growth behaviour of the C(T) specimen. This was in spite of the considerable ovalisation of the bars at the end of their deformation. However, it was not possible to obtain similar accuracy with a 3D model of the C(T)test, even after a large number of attempts to adjust the values of the GTN parameters. This, and the anisotropic shape change in the tensile bars, suggests very strongly that the damage behaviour is so anisotropic that conventional models are not good enough for a full engineering description of the flat fracture behaviour. Suitable averaging (of shape) in the modelling of the notched bar data, and the companion averaging associated with the 2D model of the C(T) data provide a relatively fast way of transferring engineering data in the tests. There is a discussion of potential ways in which to incorporate 3D effects into the modelling for those purposes where the considerable increase in computational time (due to the microstructurally-sized finite elements needed to capture the damage behaviour) is acceptable in order to include through-thickness effects.
259
Showing 1 to 7 of 7 Paper Titles