Optimization of the Working Conditions of a Single Molten Carbonate Fuel Cell

Article Preview

Abstract:

A mathematical model of a Molten Carbonate Fuel Cell (MCFC) is shown. The model is used to simulate an experimental lab-stand single fuel cell unit measuring 55 cm2. The comparison of simulated data against the experimental results is shown and commented on.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

64-71

Citation:

Online since:

December 2012

Export:

Price:

[1] Kupecki J., Badyda K. SOFC-based micro-CHP system as an example of efficient power generation unit, Archives of Thermodynamics Vol. 32, No. 3 (2011), pp.33-43.

DOI: 10.2478/v10173-011-0011-7

Google Scholar

[2] Kupecki J., Jewulski J., Badyda K. Selection of a fuel processing method for SOFC-based micro-CHP system, Rynek Energii Vol. 97, No. 6 (2011), pp.157-162.

Google Scholar

[3] J. Brouwer, F. Jabbari, E. M. Leal, and T. Orr, Analysis of a molten carbonate fuel cell: Numerical modeling and experimental validation, Journal of Power Sources 158(1), p.213 – 224, (2006).

DOI: 10.1016/j.jpowsour.2005.07.093

Google Scholar

[4] Fuel cell handbook – 6th edition, tech. rep., EG and G Technical Services, Inc., (2002).

Google Scholar

[5] J. -H. Koh, H. -K. Seo, Y. -S. Yoo, and H. C. Lim, Consideration of numerical simulation parameters and heat transfer models for a molten carbonate fuel cell stack, Chemical Engineering Journal 87, p.367–379, (2002).

DOI: 10.1016/s1385-8947(01)00234-0

Google Scholar

[6] F. Yoshiba, H. Morita, M. Yoshikawa, Y. Mugikura, Y. Izaki, T. Watanabe, M. Komoda, Y. Masudac, and N. Zaima, Improvement of electricity generating performance and life expectancy of mcfc stack by applying li/na carbonate electrolyte, Journal of Power Sources 128, p.152–164, (2004).

DOI: 10.1016/j.jpowsour.2003.10.011

Google Scholar

[7] S. Campanari, P. Chiesa, and G. Manzolini, Co2 capture from combined cycles integrated with molten carbonate fuel cells, International Journal of Greenhouse Gas Control 4, p.441–451, (2010).

DOI: 10.1016/j.ijggc.2009.11.007

Google Scholar

[8] E. Arato, B. Bosio, P. Costa, and F. Parodi, Preliminary experimental and theoretical analysis of limit performance of molten carbonate fuel cells, Journal of Power Sources 102, p.74–81, (2001).

DOI: 10.1016/s0378-7753(01)00797-2

Google Scholar

[9] E. Arato, B. Bosio, R. Massa, and F. Parodi, Optimisation of the cell shape for industrial MCFC stacks, Journal of Power Sources 86, p.302–308, (2000).

DOI: 10.1016/s0378-7753(99)00463-2

Google Scholar

[10] J. Kupecki and K. Badyda, SOFC-based micro-CHP system as an example of efficient power generation unit, Archives of Thermodynamics 32(3), p.33–43, (2011).

DOI: 10.2478/v10173-011-0011-7

Google Scholar

[11] A. Lanzini, M. Santarelli, and G. Orsello, Residential solid oxide fuel cell generator fuelled by ethanol: Cell, stack and system modelling with a preliminary experiment, Fuel Cells 10(4), p.654–675, (2010).

DOI: 10.1002/fuce.201000004

Google Scholar

[12] J. Milewski and A. Miller, Influences of the type and thickness of electrolyte on solid oxide fuel cell hybrid system performance, Journal of Fuel Cell Science and Technology 3(4), p.396–402, (2006).

DOI: 10.1115/1.2349519

Google Scholar

[13] E. Arato, B. Bosio, P. Costa, and F. Parodi, Preliminary experimental and theoretical analysis of limit performance of molten carbonate fuel cells, Journal of Power Sources 102(1-2), p.74 – 81, (2001).

DOI: 10.1016/s0378-7753(01)00797-2

Google Scholar

[14] Hyprotech Corporation, HYSYS. Plant Steady State Modelling, (1998).

Google Scholar

[15] H. Morita, M. Komoda, Y. Mugikura, Y. Izaki, T. Watanabe, Y. Masuda, and T. Matsuyama, Performance analysis of molten carbonate fuel cell using a li/na electrolyte, Journal of Power Sources 112(2), p.509 – 518, (2002).

DOI: 10.1016/s0378-7753(02)00468-8

Google Scholar

[16] M. Box, A new method of constrained optimization and a comparison with other methods, The Computer Journal 8(1), p.42–45, (1965).

Google Scholar

[17] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical recipes in c: The art of scientific computing, Cambridge University Press , p.735–757, (1988).

DOI: 10.1086/416228

Google Scholar

[18] J. Kuester and J. Mize, Optimization Techniques with FORTRAN, Mc, (1973).

Google Scholar

[19] J. V. Herle, F. Marchal, S. Leuenberger, Y. Membrez, O. Bucheli, and D. Favrat, Process flow model of solid oxide fuel cell system supplied with sewage biogas, Journal of Power Sources 131(1-2), p.127 – 141, (2004).

DOI: 10.1016/j.jpowsour.2004.01.013

Google Scholar

[20] W. M. Budzianowski, An oxy-fuel mass-recirculating process for H2 production with CO2 capture by autothermal catalytic oxyforming of methane, International Journal of Hydrogen Energy 35(14), p.7454–7469, (2010).

DOI: 10.1016/j.ijhydene.2010.04.178

Google Scholar