Investigation of Hydrogen Distribution from the Surface to the Depth in Technically Pure Titanium Alloy with the Help of Glow Discharge Optical Emission Spectroscopy

Article Preview

Abstract:

Optimal operating parameters for the study of titanium-hydrogen system with the help of glow discharge optical emission spectroscopy have been selected. Hydrogen distribution from the surface to the depth in technically pure titanium alloy after electrochemical hydrogen saturation has been studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

92-96

Citation:

Online since:

February 2013

Export:

Price:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.E. Jiang, E.A. Carter, First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals, Acta Materialla. 52 (2004) 4801-4807.

DOI: 10.1016/j.actamat.2004.06.037

Google Scholar

[2] D. Herlach, C. Kottler, T. Wider, K. Maier, Hydrogen embrittlement of metals, Physica B: Condensed Matter. 289-290 (2000) 443-446.

DOI: 10.1016/s0921-4526(00)00431-2

Google Scholar

[3] V. Madina, I. Azkarate, Compatibility of materials with hydrogen. Particular case: hydrogen embrittlement of titanium alloys, International Journal of Hydrogen Energy. 34 (2009) 5976-5980L.

DOI: 10.1016/j.ijhydene.2009.01.058

Google Scholar

[4] H-J. Christ, A. Senemmar, M. Decker, K. Prubner, Effect of hydrogen on mechanical properties of titanium alloys, Sadhana. 28 (2003) 453-465.

DOI: 10.1007/bf02706443

Google Scholar

[5] C.P. Liang, H.R. Gong, Fundamental influence of hydrogen on various properties of alpha-titanium, International Journal of Hydrogen Energy. 35 (2010) 3812-3816.

DOI: 10.1016/j.ijhydene.2010.01.080

Google Scholar

[6] E. Tal-Gutelmacher, D. Eliezer, Hydrogen cracking in titanium-based alloys, Journal of Alloys and Compounds. 404-406 (2005) 621-625.

DOI: 10.1016/j.jallcom.2005.02.098

Google Scholar

[7] V.I. Shvachko, Studies using negative secondary ion mass-spectrometry: hydrogen on iron surface, Surface Science. 411 (1998) 882-887.

DOI: 10.1016/s0039-6028(98)00404-x

Google Scholar

[8] Nakamura, Measurement of deuterium and helium by glow-discharge optical emission spectroscopy for plasma–surface interaction studies, Fusion Engineering and Design. 87 (7–8) (2012) 1091-1094.

DOI: 10.1016/j.fusengdes.2012.02.078

Google Scholar

[9] T. Nelis, J. Pallosi, Glow Discharge as a Tool for Surface and Interface Analysis, Applied Spectroscopy Reviews. 41 (2006) 227-258.

DOI: 10.1080/05704920600620345

Google Scholar

[10] M. Wilke, G. Teichert, R. Gemma, A. Pundt, R. Kirchheim, H. Romanus, P. Schaaf, Glow discharge optical emission spectroscopy for accurate and well resolved analysis of coatings and thin films, Thin Solid Films. 520 (2011) 1660-1667.

DOI: 10.1016/j.tsf.2011.07.058

Google Scholar

[11] M. Uemura, T. Yamamoto, K. Fushimi, Y. Aoki, K. Shimizu, H. Habazaki, Depth profile analysis of thin passive films on stainless steel by glow discharge optical emission spectroscopy Original Research Article, Corrosion Science. 51 (7) (2009).

DOI: 10.1016/j.corsci.2008.11.017

Google Scholar

[12] G. Gamez, M. Voronov, S. J. Ray, V. Hoffmann, G. M. Hieftje, J. Michler, Surface elemental mapping via glow discharge optical emission spectroscopy Spectrochimica Acta Part B: Atomic Spectroscopy. 70 (2012) 1-9.

DOI: 10.1016/j.sab.2012.04.007

Google Scholar