[1]
D. Okumura, A. Okada, N. Ohno, Buckling behavior of Kelvin open-cell foams under.
Google Scholar
[111]
compressive loads. Int. J. Solids Struct. 45 (2008) 3807-3820.
Google Scholar
[2]
L.J. Gibson, M.F. Ashby, Cellular solids: structure and properties, 2nd ed., Cambridge University Press, Cambridge, 1997, p.2.
Google Scholar
[3]
J. Woong, Effect of microstructure of closed-cell foam on strength and effective stiffness. Ph. D. dissertation, Texas A&M University, (2006).
Google Scholar
[4]
L.J. Gibson, M.F. Ashby, G. S Schajer, C.I. Robertson, The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London A 382 (1982) 25-42.
Google Scholar
[5]
L. J Gibson, M.F. Ashby, The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London A 382 (1982) 43-59.
Google Scholar
[6]
J.G. Wang, W. Sun, A. Anand, A microstructural analysis for crushable deformation of foam materials. Computational Materials Science 44 (2008) 195-200.
DOI: 10.1016/j.commatsci.2008.01.014
Google Scholar
[7]
S.A. Meguid, S. S Cheon, N. El-Abbasi, FE modeling of deformation localization in metallic foams. Finite Element in Analysis and Design 38 (2002) 361-643.
DOI: 10.1016/s0168-874x(01)00096-8
Google Scholar
[8]
A. Czekanski, M.A. Elbestawi, A.A. Meguid. On the FE modeling of closed-cell aluminum foam. International Journal of Mechanics and Materials in Design 2 (2005) 23-34.
DOI: 10.1007/s10999-005-0518-7
Google Scholar
[9]
W. Thomson, On the division of space with minimum partitional area. Philosophy Magazine 24 (1887) 503-514.
Google Scholar
[10]
N.J. Mills, H.X. Zhu, The high strain compression of closed-cell polymer foams. Journal of the Mechanics and Physics of Solids 47 (1999) 669-695.
DOI: 10.1016/s0022-5096(98)00007-6
Google Scholar
[11]
N.J. Mills, R. Stämpfli R, F. Marone, P.A. Brühwiler, Finite element micromechanics model of impact compression of closed-cell polymer foams. Int. J. Solids Struct. 46 (2009) 677-697.
DOI: 10.1016/j.ijsolstr.2008.09.012
Google Scholar
[12]
N.J. Mills, Deformation mechanics and the yield surface of low-density, closed-cell polymer foams. Journal of Materials Science 45(2010) 5831-5843.
DOI: 10.1007/s10853-010-4659-1
Google Scholar
[13]
J.W. Sue, Effect of microstructure of closed-cell foam on strength and effective stiffness. Ph. D. dissertation, Texas A&M University, (2006).
Google Scholar
[14]
A.P. Roberts, E.J. Garboczi, Elastic moduli of model random three-dimensional closed-cell cellular solids. Acta Materialia 49 (2001) 189-197.
DOI: 10.1016/s1359-6454(00)00314-1
Google Scholar
[15]
J. Pawlicki, E. Koza, P. Zurawski, M. Leonowicz, Mechanical properties of closed-cell Al foams based on tetrakaidecahedronal model of structure. International Conference Advanced Metallic Materials. Smolenice, Slovakia, (2003).
Google Scholar
[16]
L.J. Gibson, M.F. Ashby, Cellular solids: structure and properties. 2nd ed., Cambridge University Press, Cambridge, 1997, p.41.
Google Scholar
[17]
L.J. Gibson, M.F. Ashby, Cellular solids: structure and properties. 2nd ed., Cambridge University Press, Cambridge, 1997, p.28.
Google Scholar
[18]
L.J. Gibson, M.F. Ashby, Cellular solids: structure and properties. 2nd ed., Cambridge University Press, Cambridge, 1997, p.42.
Google Scholar
[19]
H.F. Mark, J.I. Kroschwitz, Encyclopedia of polymer science and technology, Volume 4. 3rd Edition. Wiley-Interscience. Hoboken, N. J. , (2003).
Google Scholar