Containerless Processing in the Study of Metastable Solids from Undercooled Melts

Article Preview

Abstract:

An undercooled melt possesses an enhanced free enthalpy that enables to crystallize metastable solids in competition with their stable counterparts. Crystal nucleation selects the crystallographic phase whereas the growth dynamics controls microstructure evolution. We apply containerless processing such as electromagnetic and electrostatic levitation to containerlesss undercool and solidify metallic melts. Heterogeneous nucleation on container-walls is completely avoided leading to large undercooling with the extra benefit that the freely suspended drop is direct accessible for in situ observation of crystallization far away from equilibrium. Results of investigations of maximum undercoolability on pure zirconium are presented showing the limit of maximum undercoolability set by the onset of homogeneous nucleation. Rapid dendrite growth is measured as a function of undercooling by a high-speed camera and analysed within extended theories of non-equilibrium solidification. In such both supersaturated solid solutions and disordered superlattice structure of intermetallics are formed at high growth velocities. A sharp interface theory of dendrite growth is capable to describe the non-equilibrium solidification phenomena during rapid crystallization of deeply undercooled melts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-27

Citation:

Online since:

February 2014

Authors:

Export:

Price:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Ostwald, Zeitschrift für Physikalische Chemie 22 (1897) 289.

Google Scholar

[2] J. W. Christian, The Theory of Transformation in Metals and Alloys, (Pergamon, Oxford 1975).

Google Scholar

[3] D.M. Herlach, Annual Review of Materials Science 21 (1991) 23.

Google Scholar

[4] T. Meister, H. Werner, G. Lohöfer, D.M. Herlach, H. Unbehauen, Engineering Practice 11 (2003) 117.

Google Scholar

[5] J. A. Dantzig and M. Rappaz, Solidification, EPFL Press Lausanne (2010), chapter 8.

Google Scholar

[6] C. B. Arnold, M. J. Aziz, M. Schwarz and D.M. Herlach, Phys. Rev B. 59 (1999) 334.

Google Scholar

[7] H. Hartmann, D. Holland-Moritz, P. Galenko, and D.M. Herlach, Europhys. Lett. 87 (2009) 40007.

DOI: 10.1209/0295-5075/87/40007

Google Scholar

[8] O. Funke, G. Phanikumar, P.K. Galenko, L. Chernova, S. Reutzel, M. Kolbe, and D.M. Herlach, J. Cryst. Growth 297 (2006) 211.

DOI: 10.1016/j.jcrysgro.2006.08.045

Google Scholar

[9] A. Rulison and W. Rhim, Rev. Sci. Instrum. 65 (1993) 695.

Google Scholar

[10] V. Skripov, Material Science, Crystal Growth and Materials (1977).

Google Scholar

[11] W. Hofmeister, C. Morton, and R. Bayuzick, Acta Mater. 46 (1998). (1903).

Google Scholar

[12] S. Klein, D. Holland-Moritz, and D. M. Herlach , Phys. Rev. B 80 (2009) 212202.

Google Scholar

[13] D. R. Nelson and F. Spaepen, Solid State Physics, Academic, New York, (1989).

Google Scholar

[14] D. W. Marr and A. P. Gast, J. Chem. Phys. 99 (1993) (2024).

Google Scholar

[15] D. Y. Sun, M. Asta, and J. J. Hoyt, Phys. Rev. B 69, (2004) 174103.

Google Scholar

[16] T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, and D. M. Herlach, Phys. Rev. Lett. 89 (2002) 075507.

DOI: 10.1103/physrevlett.89.075507

Google Scholar

[17] G. W. Lee, A. K. Gangopadhyay, K. F. Kelton, R. W. Hyers, T. J. Rathz, J. R. Rogers, and D. S. Robinson, Phys. Rev. Lett. 93 (2004) 037802.

Google Scholar

[18] for more details, see e. g.: D. M. Herlach, P. K. Galenko, D. Holland-Moritz, Metastable Materials from Undercooled Melts, Pergamon Materials Series, ed. Robert Cahn (2007).

DOI: 10.1016/s1470-1804(07)80023-x

Google Scholar

[19] J. J. Hoyt, M. Asta, T. Haxhimali, A. Karma, R.E. Napolitano, R. Trivedi, B. B. Laird, and J. R. Morris, MRS Bulletin 29 (2004) 935.

DOI: 10.1557/mrs2004.263

Google Scholar

[20] H. Hartmann, D. Holland-Moritz, P. K. Galenko, and D. M. Herlach, Europhys. Lett. 87 (2009) 40007.

DOI: 10.1209/0295-5075/87/40007

Google Scholar

[21] P.K. Galenko and S. L. Sobolev, Physical Review E 55 (1997) 343.

Google Scholar

[22] J. A. Kittl, P. G. Sanders, M. J. Aziz, D. P. Brunco, and M. O. Thomson, Acta Mater. 48 (2000) 4797.

Google Scholar

[23] C. Arnold, M. J. Aziz, M. Schwarz, and D. M. Herlach, Phys. Rev. B 59 (1999) 334.

Google Scholar

[24] K. Eckler, K. Eckler, R.F. Cochrane, D.M. Herlach, B. Feuerbacher and M. Jurisch, Phys. Rev. B, Brief Report, 45 (1992) 5019 - 5022.

DOI: 10.1103/physrevb.45.5019

Google Scholar

[25] H. Hartmann, PhD Thesis Ruhr-Universität Bochum (2008).

Google Scholar

[26] This is subject of a forthcoming paper, presently in progress.

Google Scholar

[27] S. Klein, D. Holland-Moritz, and D.M. Herlach, Phys. Rev. B (BR) 80 (2009) 212202.

Google Scholar