[1]
Kennedy J, Eberhart R. Particle Swarm Optimization[C]. Proc IEEE Int Conf on Neural Networks, Perth, 1995: 1942-(1948).
Google Scholar
[2]
Zeng Jian-chao, Jie Jing, Cui Zhi-Hua. Particle Swarm Optimization[M]. Beijing: Science Press, (2004).
Google Scholar
[3]
Shi Yuhui, Eberhart R. Empirical study of particle swarm optimization[C]. Proc of the Congress on Evolutionary Computation. 1999: 1945-(1950).
Google Scholar
[4]
Clerc M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization. Proc of the Congress on Evolutionary Computation. 1999: 1951-(1957).
DOI: 10.1109/cec.1999.785513
Google Scholar
[5]
Suganthan P.N. Particle swarm optimiser with neighbourhood operator Evolutionary Computation[C]. Proceedings of the 1999 Congress. 1999 (3): 1958-(1962).
DOI: 10.1109/cec.1999.785514
Google Scholar
[6]
Mendes, R. Kennedy, J. Neves. Watch thy neighbor or how the swarm can learn from its environment[C]. Swarm Intelligence Symposium. 2003, 24: 88–94.
DOI: 10.1109/sis.2003.1202252
Google Scholar
[7]
Liang J.J. Suganthan P.N. Dynamic multi-swarm particle swarm optimizer[C]. Swarm Intelligence Symposium, 2005: 124-129.
DOI: 10.1109/sis.2005.1501611
Google Scholar
[8]
Angeline P J. Using selection to improve particle swarm optimization[C]. Proc IEEE Int Conf on Evolutionary Computation. 1998: 84-89.
Google Scholar
[9]
XH Shi, LM Wan, HP Lee, et al. An Improved Genetic Algorithm with Variable Population-size and A PSO-GA Based Hybrid Evolutionary Algorithm[C]. Second International Conference on Machine Learning and Cybernetics. 2003: 1735-1740.
DOI: 10.1109/icmlc.2003.1259777
Google Scholar
[10]
Lovbjerg M,Rasmussen T K, Krink T. Hybrid particle swarm optimizer with breeding and subpopulations[C]. Proceedings of the Genetic and Evolutionary Computation Conference. 2001: 135-138.
Google Scholar
[11]
Gao Ying, Xie Shengli. Particle swarm optimization based on simulated annealing [J]. Computer Engineering and Applications, 2004, 40 (1) : 47-50.
Google Scholar
[12]
Wang Lifang, Zeng Jianchao. Coevolutionary approach based on PSO and simulated annealing algorithm [J]. Automatica Sinica, 2006, 32 (04) : 630-635.
Google Scholar
[13]
Bo Liu, Ling Wang, Yi-Hui Jin, Fang Tang and De-Xian Huang. Improved particle swarm optimization combined with chaos[J], Chaos, Solitons and fractals. 2005, 25: 1261-1271.
DOI: 10.1016/j.chaos.2004.11.095
Google Scholar
[14]
Van den Bergh F, Engelbrecht A P. A New Locally Convergent Particle Swarm Optimizer[J]. Systems, Man and Cybernetics. 2002, (3): 96-101.
DOI: 10.1109/icsmc.2002.1176018
Google Scholar
[15]
Solis F, Wets R. Minimization by random search techniques[J]. Mathematics of Operations Research. 1981, 6(1): 19-30.
DOI: 10.1287/moor.6.1.19
Google Scholar
[16]
Van den Bergh F. An analysis of particle swarm optimizers . Department of Computer Science, University of Pretoria, South africa, (2002).
Google Scholar
[17]
Zeng Jian-chao, Cui Zhi-Hua. A Guaranteed Global Convergence Particle Swarm Optimizer[J]. Computer Research and Development, 2004, 41 (8) : 1333-1338.
Google Scholar
[18]
He Ran, Wang Yong-Ji, Wang Qing. An Improved Particle Swarm Optimization Based on Self-Adaptive Escape Velocity [J]. Journal of Software . 2005, 16 (12) : 2036-(2044).
DOI: 10.1360/jos162036
Google Scholar
[19]
Gao Haibing, Gao Liang, Zhou Chi. Research on neural network training algorithm based on particle swarm optimization[J], Chinese Journal of electronics, 2004, 32 (9): 1572-1574.
DOI: 10.1109/wcica.2004.1343038
Google Scholar
[20]
Yang Yaping, Tan Ying, Zeng Jian-chao. Secondary particle swarm algorithm and its parameter adaptive strategy [J]. Computer Engineering and Applications, 2006, 42 (31) : 64-79.
Google Scholar
[21]
Kennedy J, Eberhart R. Swarm Intelligence. Morgan Kaufmann, (2001).
Google Scholar
[22]
Ray T, Liew K M. A swarm with an effective information sharing mechanism for unconstrained and constrained single objective optimization problems . Proc IEEE Int Conf on Evolutionary Computation[C]. Seoul, 2001: 75-80.
DOI: 10.1109/cec.2001.934373
Google Scholar