Some Recent Developments in Coupling of Finite Element and Boundary Element Methods - Part I: An Overview

Article Preview

Abstract:

Conventional and a class of domain decomposition finite element–boundary element coupling (FEM–BEM) methods are reviewed. This is Part I of two papers. In Part II, a review of the mixed Dirichlet-Neumann domain decomposition FEM-BEM coupling method is presented and optimal dynamic values of the relaxation parameters for the mixed Dirichlet-Neumann FEM-BEM coupling method are, furthermore, derived.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2936-2942

Citation:

Online since:

July 2014

Export:

Price:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Stein, M. Kreienmeyer, Coupling of BEM and FEM by a Multiplicative Schwarz Method and its Parallel Implementation, Engineering Computations, 15 (1998), pp.173-198.

DOI: 10.1108/02644409810202620

Google Scholar

[2] W.M. Elleithy, H. J. Al-Gahtani, An Overlapping Domain Decomposition Approach for Coupling the Finite and Boundary Element Methods, Engineering Analysis with Boundary Elements, 24 (2000), pp.391-398.

DOI: 10.1016/s0955-7997(00)00014-x

Google Scholar

[3] N. Kamiya, H. Iwase, E. Kita, Parallel Computing for the Combination Method of BEM and FEM, Engineering Analysis with Boundary Elements, 18 (1996), pp.221-229.

DOI: 10.1016/s0955-7997(96)00052-5

Google Scholar

[4] C.C. Lin, E.C. Lawton, J.A. Caliendo, L.R. Anderson, An Iterative Finite Element-Boundary Element Algorithm, Computers & Structures, 39 (1996), pp.899-909.

DOI: 10.1016/0045-7949(95)00285-5

Google Scholar

[5] Y.T. Feng, D.R.J. Owen, Iterative Solution of Coupled FE/BE Discretization for Plate-Foundation Interaction Problems, International Journal for Numerical Methods in Engineering, 39 (1996), p.1889-(1901).

DOI: 10.1002/(sici)1097-0207(19960615)39:11<1889::aid-nme934>3.0.co;2-z

Google Scholar

[6] W.M. Elleithy, H.J. Al-Gahtani, M. El-Gebeily, Iterative Coupling of BE and FE Methods in Elastostatics, Engineering Analysis with Boundary Elements, 25 (2001), pp.685-695.

DOI: 10.1016/s0955-7997(01)00054-6

Google Scholar

[7] M. El-Gebeily, W.M. Elleithy, H.J. Al-Gahtani, Convergence of the Domain Decomposition Finite Element-Boundary Element Coupling Methods, Computer Methods in Applied Mechanics and Engineering, 191 (2002), pp.4851-4867.

DOI: 10.1016/s0045-7825(02)00405-x

Google Scholar

[8] W.M. Elleithy, M. Tanaka, Interface Relaxation Algorithms for BEM-BEM Coupling and FEM-BEM Coupling, Computer Methods in Applied Mechanics and Engineering, 192 (2003), pp.2977-2992.

DOI: 10.1016/s0045-7825(03)00312-8

Google Scholar

[9] W. M. Elleithy, M. Tanaka, A. Guzik, Interface Relaxation FEM-BEM Coupling Method for Elasto-Plastic Analysis, Engineering Analysis with Boundary Elements, 28 (2004), pp.849-857.

DOI: 10.1016/j.enganabound.2003.12.002

Google Scholar

[10] D. Soares Jr, O. von Estorff, W. J. Mansur, Iterative coupling of BEM and FEM for nonlinear dynamic analyses, Computational Mechanics, 34 (2004), pp.67-73.

DOI: 10.1007/s00466-004-0554-4

Google Scholar

[11] O. von Estorff, C. Hagen, C., Iterative coupling of FEM and BEM in 3D transient elastodynamics, Engineering Analysis with Boundary Elements, 29 (2005), pp.775-787.

DOI: 10.1016/j.enganabound.2005.04.004

Google Scholar

[12] D. Soares Jr, W. J. Mansur, An Efficient Time-Domain BEM/FEM Coupling for Acoustic-Elastodynamic Interaction Problems, Computer Methods in Engineering and Sciences, 8 (2005), pp.153-164.

Google Scholar

[13] D. Soares Jr, O. von Estorff, W. J. Mansur, Efficient Nonlinear Solid-Fluid Interaction Analysis by an Iterative BEM/FEM Coupling, International Journal for Numerical Methods in Engineering, 64 (2005), pp.1416-1431.

DOI: 10.1002/nme.1408

Google Scholar

[14] D. Soares Jr, Coupled numerical methods to analyze interacting acoustic-dynamic models by multidomain decomposition techniques, Mathematical Problems in Engineering, 2011 (2011), Article ID 245170, 28 pages.

DOI: 10.1155/2011/245170

Google Scholar

[15] D. Soares Jr, FEM-BEM iterative coupling procedures to analyze interacting wave propagation models: fluid-fluid, solid-solid and fluid-solid analyses, Coupled Systems Mechanics, 1 (2012), pp.19-37.

DOI: 10.12989/csm.2012.1.1.019

Google Scholar

[16] D. Soares Jr, and L. Godinho, An overview of recent advances in the iterative analysis of coupled models for wave propagation, Journal of Applied Mathematics, 2014 (2014), Article ID 426283, 21 pages.

DOI: 10.1155/2014/426283

Google Scholar

[17] W. Elleithy, Interface Relaxation FEM-BEM Coupling: Dynamic Procedures of Determining the Relaxation Parameters, Sixth Alexandria International Conference on Structural and Geotechnical Engineering (AICSGE6), Alexandria, Egypt, (2007).

Google Scholar

[18] A. Eslami Haghighat, S. M. Binesh. Domain Decomposition Algorithm for Coupling of Finite Element and Boundary Element Methods, Arabian Journal for Science and Engineering, in press.

DOI: 10.1007/s13369-014-0995-9

Google Scholar

[19] W. Elleithy, Multi-Domain Analysis by FEM-BEM Coupling and BEM-DD. Part I: Formulation and Implementation, Applied Mechanics and Materials, (353-356) 2013, pp.3263-3268.

DOI: 10.4028/www.scientific.net/amm.353-356.3263

Google Scholar

[20] W. Elleithy, Multi-Domain Analysis by FEM-BEM Coupling and BEM-DD. Part II: Convergence, Applied Mechanics and Materials, 353-356 (2013), pp.3269-3275.

DOI: 10.4028/www.scientific.net/amm.353-356.3269

Google Scholar