[1]
WHO, Constitution of the World Health Organization. In: Basic Documents. World Health Organization, Geneva, Switzerland, (1948).
Google Scholar
[2]
ASHRAE, Ventilation for acceptable indoor air quality; standard 62–2001. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA. (2001).
Google Scholar
[3]
National Academy of Sciences – National Research Council, The airliner cabin environment and the health ofpassengers and crew. National Academy Press, Washington, DC, (2002).
Google Scholar
[4]
J. Murawski, Insecticide use in occupied areas of aircraft. In Handbook Environ Chem Volume 4. Edited by: Hocking MB. Berlin, Heidelberg: Springer-Verlag, (2005).
Google Scholar
[5]
P. Sutton, X. Vergara, J. Beckman, R. Das, Occupational illness among flight attendants due to aircraft disinsection. CA Department of Health Services, Occupational Health Branch, Oakland, CA(2003).
DOI: 10.1002/ajim.20452
Google Scholar
[6]
ACGIH, Threshold limit values for chemical substances and physical agents and biological exposure. American Conference of Governmental Industrial Hygienists, Cincinnati, OH, (1998).
Google Scholar
[7]
D.P. Tashkin, A.H. Coulson, M.S. Simmons, G.H. Spivey, Respiratory symptoms of flight attendants during high-altitude flight: possible relation to cabin ozone exposure, Int Arch Occup Environ Health. 52: 2(1983)117-137.
DOI: 10.1007/bf00405416
Google Scholar
[8]
M.A. Waters, T.F. Bloom, B. Grajewski, Measurements of indoor air quality on commercial transport aircraft, Proceedings of the 9th International Conference on Indoor Air Quality and Climate: 2002; Santa Cruz, CA Indoor Air. 2002: 782-787.
DOI: 10.4324/9780203476024.ch8
Google Scholar
[9]
E.A. Whelan, C. C Lawson, B. Grajewski, M.R. Petersen, L.E. Pinkerton, E.M. Ward, T.M. Schnorr: Prevalence of respiratory symptoms among female flight attendants and teachers. Occup Environ Med 2003, 60(12): 929-934.
DOI: 10.1136/oem.60.12.929
Google Scholar
[10]
N. Boschi and F. Haghighat, Aircraft Cabin Indoor Air Environment Requirements, Environmental Chemistry. Vol. 4, Part H (2005): 53–83.
DOI: 10.1007/b107236
Google Scholar
[11]
National Academy of Sciences – National Research Council, The airliner cabin environment: air quality and safety. National Academy Press, Washington, DC, (1986).
Google Scholar
[12]
W. Bishof, O3 measurements in jet airliner cabin air, Water Air Soil Poll. (1973)2(1): 3.
Google Scholar
[13]
N.L. Nagda, H.E. Rector, Z. Li, D.R. Space, Aircraft cabin air quality: a critical review of past monitoring studies. In: Nagda NL (ed) Air quality and comfort in airlines cabins: ASTM STP 1393. American Society for Testing and Materials, West Conshohocken, PA, (2000).
DOI: 10.1520/stp14496s
Google Scholar
[14]
A.E.R. Budd, Ozone Control in High-Flying Jet Aircraft- platinum catalyst ensures decomposition, Platinum Metals Review. 1980, 24, (31, 90-94.
Google Scholar
[15]
W.W. Nazaroff, A.J. Gadgil, C.J. Weshler (1993).
Google Scholar
[16]
C.J. Weschler (2000) Indoor Air 10(2): 269.
Google Scholar
[17]
M.B. Hocking, Trends in cabin air quality of commercial aircraft: industry and passenger perspectives. Review on Environmental Health. 17(2002)49.
DOI: 10.1515/reveh.2002.17.1.1
Google Scholar
[18]
T. Lindgren, D. Norback, K. Andersson, B.G. Dammstrom, Cabin environment and perception of cabin air quality among commercial aircrew, Aviation, space, and environmental medicine. 71(2000)774–782.
Google Scholar
[19]
Australian Transport Safety Bureau, Aviation Safety Investigation Report: British Aerospace PlcBAe 146-300, VH-NJF: Australian Transport Safety Bureau. (1997).
Google Scholar
[20]
Australian Transport Safety Bureau, ATSB database of fumes events 1999 - 2009. (2009).
Google Scholar
[21]
Michaelis, S. Aviation Contaminated Air Reference Manual - pg 233 (1st ed., p.233): DFT Enterprises Ltd. (2007b).
Google Scholar
[22]
L. Pang, J. Xu, L. Fang, M. Gong, H. Zhang, Y. Zhang, Evaluation of an improved air distribution system for aircraft cabin, Building and Environment. 59(2013)145-152.
DOI: 10.1016/j.buildenv.2012.08.015
Google Scholar
[23]
S. Olsen, H. Chang, T. Cheung, A. Tang, T. Fisk, S. Ooi, Transmission of the severe acute respiratory syndrome on aircraft, New England Journal of Medicine. 349: 25(2003)2416-2422.
DOI: 10.1056/nejmoa031349
Google Scholar
[24]
J.D. Spengler, S. Ludwig, R.A. Weker, Ozone exposures during tans-continental and trans-pacific flights. Indoor Air, 14(2004)67-73.
DOI: 10.1111/j.1600-0668.2004.00275.x
Google Scholar
[25]
S. Bhangar, S.C. Cowlin, B.C. Singer, R.G. Sextro, W.W. Nazaroff, Ozone levels in passenger cabins of commercial aircraft on North American and transoceanic routes, Environmental Science & Technology, 42(2008)3938-3943.
DOI: 10.1021/es702967k
Google Scholar
[26]
J.F. Grimmer and D.S. Poe, Update on eustachian tube dysfunction and the patulous eustachian tube, Current Opinion in Otolaryngology & Head and Neck Surgery. 13(2005)277-282.
DOI: 10.1097/01.moo.0000176465.68128.45
Google Scholar
[27]
I.J. Blumen and K.J. Rinnert, Altitude Physiology and the Stresses of Flight, Air Medical Journal. 14: 2(1995)April-June.
DOI: 10.1016/s1067-991x(95)90102-7
Google Scholar
[28]
P. Zamankhan, G. Ahmadi, Z. Wang P.K. Hopke, Y. S. Cheng C.S. Wei, &D. Leonard, Airflow and deposition of nano-particles in a human nasal cavity, Aerosol science and technology. 40(2006)463-476.
DOI: 10.1080/02786820600660903
Google Scholar
[29]
S. Ishikawa, T. Nakayama, M. Watanabe, &T. Matsuzawa, Flow mechanisms in the human olfactory groove numerical simulation of nasal physiological respiration during inspiration, expiration, and sniffing, Archives of otolaryngology - head and neck surgery. 135(2009).
DOI: 10.1001/archoto.2008.530
Google Scholar
[30]
Y. Liu, E. A. Matida, J. Gu and M. R. Johnson, Numerical simulation of aerosol deposition in a 3-D human nasal cavity using RANS, RANS/EIM, and LES, Journal of Aerosol. Science., 38(2007)683-700.
DOI: 10.1016/j.jaerosci.2007.05.003
Google Scholar
[31]
M. Zubair, M.Z. Abdullah, A.H. Suzina, I. Rushdan, I.L. Shuaib, K.A. Ahmad, A critical overview of limitations of CFD modeling in nasal airflow, Journal of Medical and Biological Engineering. 32: 2(2012)77-84.
Google Scholar
[32]
M. Mihaescu,S. Murugappan, E. Gutmark, L. F. Donnelly, &M. Kalra, Computational modeling of upper airway before and after adenotonsillectomy for obstructive sleep apnea. Laryngoscope. 118(2008b)360-362.
DOI: 10.1097/mlg.0b013e31815937c1
Google Scholar
[33]
G. Xiong, J. Zhan,K. Zuo, J. Li, L. Rong, &G. Xu, Numerical flow simulation in the post-endoscopic sinus surgery nasal cavity, Medical & Biological Engineering & Computing. 46(2008)1161-7.
DOI: 10.1007/s11517-008-0384-1
Google Scholar
[34]
Mihaescu, M., Gutmark, E., Murugappan, S., Elluru, R., Cohen, A. & Willging, J. P., Modeling flow in a compromised pediatric airway breathing air and heliox. Laryngoscope. 118(2008a)2205-2211.
DOI: 10.1097/mlg.0b013e3181856051
Google Scholar
[35]
M. Zubair, V.N. Riazuddin, M.Z. Abdullah, I. Rushdan, I.L. Shuaib, K.A. Ahmad, Computational fluid dynamics study on the effect of posture on the airflow characteristics inside the nasal cavity, Asian Biomedicine. 7: 6(2014)835-840.
DOI: 10.2478/abm-2010-0085
Google Scholar
[36]
S.M. Abdul Khader, AnuragAyachit, RaghuvirPai, M. Zubair, K.A. Ahmad, V.R. Rao, Study of the influence of Normal and High Blood pressure on normal and stenosed Carotid Bifurcation using Fluid-Structure Interaction, Applied Mechanics and Materials, 315(2013).
DOI: 10.4028/www.scientific.net/amm.315.982
Google Scholar
[37]
V.N. Riazuddin, M. Zubair, A. H Suzina, M.Z. Abdullah, I. Rushdan, I.L. Shuaib, K.A. Ahmad, Numerical study of inspiratory and expiratory flow in a human nasal cavity, Journal of Medical and Biological Engineering. 31: 3(2011)201-206.
Google Scholar
[38]
M. Zubair, M.Z. Abdullah, K.A. Ahmad. Hybrid mesh for nasal airflow studies. Computational and Mathematical Methods in Medicine Volume 2013 , Article ID 727362, 7 pages http: /dx. doi. org/10. 1155/2013/727362. (2013).
DOI: 10.1155/2013/727362
Google Scholar
[39]
M. Zubair, V.N. Riazuddin, M.Z. Abdullah, I. Rushdan, I.L. Shuaib, K.A. Ahmad. Computational fluid dynamics study of pull and plug flow boundary condition on nasal airflow, Biomedical Engineering: Applications, Basis and Communications, 25(2013).
DOI: 10.4015/s1016237213500440
Google Scholar