Effect of Anti-Reflective Layer in Dye-Sensitized Solar Cells

Article Preview

Abstract:

Anti-reflective (AR) layers play an important role in boosting the amount of light entering a device and reducing reflection losses in a device, thereby enhancing the power conversion efficiency of solar cells. We have coated an AR layer on the surface of a dye-sensitized solar cell device by using an electron beam evaporation system and investigated the effects of the AR layer by measuring photovoltaic performance. The AR layer is found to increases the Jsc and η of the solar cell.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

320-323

Citation:

Online since:

December 2014

Export:

Price:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. O'Regan and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, Vol. 353, (1991), pp.737-740.

DOI: 10.1038/353737a0

Google Scholar

[2] M. Gratzel, Photoelectrochemical cells, Nature, Vol. 414, (2001), pp.338-344.

Google Scholar

[3] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos and M. Gratzel, Conversion of light to electricity by cis-X2bis(2, 2'-bipyridyl-4, 4' -dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc., Vol. 115, (1993).

DOI: 10.1021/ja00067a063

Google Scholar

[4] D. Bouhafs, A. Moussi, A. Chikouche and J.M. Ruiz, Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells, Solar Energy Materials and Solar Cells, Vol. 52, (1988), pp.79-92.

DOI: 10.1016/s0927-0248(97)00273-0

Google Scholar

[5] I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To and R. Noufi, 19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor, Prog. Photovolt.: Res. Appl., Vol. 16, (2008), pp.235-239.

DOI: 10.1002/pip.822

Google Scholar

[6] M. Cid, N. Stem, C. Brunetti, A.F. Beloto and C.A.S. Ramos, Improvements in anti-reflection coatings for high-efficiency silicon solar cells, Surface and Coatings Technology, Vol. 106, (1998), pp.117-120.

DOI: 10.1016/s0257-8972(98)00499-x

Google Scholar

[7] B.S. Richards, Single-material TiO2 double-layer antireflection coatings, Solar Energy Materials & Solar Cells, Vol. 79, (2003), pp.369-390.

DOI: 10.1016/s0927-0248(02)00473-7

Google Scholar

[8] Z. Chen, P. Sana, J. Salami and A. Rohatgi, A novel and effective PECVD SiO2/SiN antireflection coating for Si solar cells, IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol. 40, (1993), pp.1161-1165.

DOI: 10.1109/16.214744

Google Scholar

[9] H.J. Jo, J.E. Nam, D.H. Kim, H. j. Kim and J.K. Kang, A comparison of the electronic and photovoltaic properties of novel twin-anchoring organic dyes containing varying lengths of π-bridges in dye-sensitized solar cells, Dyes and Pigments, Vol. 102, (2014).

DOI: 10.1016/j.dyepig.2013.10.032

Google Scholar

[10] J. Bisquert, Comment on "Diffusion Impedance and Space Charge Capacitance in the Nanoporous Dye-Sensitized Electrochemical Solar Cell" and "Electronic Transport in Dye-Sensitized Nanoporous TiO2 Solar Cells Comparison of Electrolyte and Solid-State Devices, J. Phys. Chem. B, Vol. 107, (2003).

DOI: 10.1021/jp034793y

Google Scholar