[1]
B. O'Regan and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, Vol. 353, (1991), pp.737-740.
DOI: 10.1038/353737a0
Google Scholar
[2]
M. Gratzel, Photoelectrochemical cells, Nature, Vol. 414, (2001), pp.338-344.
Google Scholar
[3]
M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos and M. Gratzel, Conversion of light to electricity by cis-X2bis(2, 2'-bipyridyl-4, 4' -dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc., Vol. 115, (1993).
DOI: 10.1021/ja00067a063
Google Scholar
[4]
D. Bouhafs, A. Moussi, A. Chikouche and J.M. Ruiz, Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells, Solar Energy Materials and Solar Cells, Vol. 52, (1988), pp.79-92.
DOI: 10.1016/s0927-0248(97)00273-0
Google Scholar
[5]
I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To and R. Noufi, 19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor, Prog. Photovolt.: Res. Appl., Vol. 16, (2008), pp.235-239.
DOI: 10.1002/pip.822
Google Scholar
[6]
M. Cid, N. Stem, C. Brunetti, A.F. Beloto and C.A.S. Ramos, Improvements in anti-reflection coatings for high-efficiency silicon solar cells, Surface and Coatings Technology, Vol. 106, (1998), pp.117-120.
DOI: 10.1016/s0257-8972(98)00499-x
Google Scholar
[7]
B.S. Richards, Single-material TiO2 double-layer antireflection coatings, Solar Energy Materials & Solar Cells, Vol. 79, (2003), pp.369-390.
DOI: 10.1016/s0927-0248(02)00473-7
Google Scholar
[8]
Z. Chen, P. Sana, J. Salami and A. Rohatgi, A novel and effective PECVD SiO2/SiN antireflection coating for Si solar cells, IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol. 40, (1993), pp.1161-1165.
DOI: 10.1109/16.214744
Google Scholar
[9]
H.J. Jo, J.E. Nam, D.H. Kim, H. j. Kim and J.K. Kang, A comparison of the electronic and photovoltaic properties of novel twin-anchoring organic dyes containing varying lengths of π-bridges in dye-sensitized solar cells, Dyes and Pigments, Vol. 102, (2014).
DOI: 10.1016/j.dyepig.2013.10.032
Google Scholar
[10]
J. Bisquert, Comment on "Diffusion Impedance and Space Charge Capacitance in the Nanoporous Dye-Sensitized Electrochemical Solar Cell" and "Electronic Transport in Dye-Sensitized Nanoporous TiO2 Solar Cells Comparison of Electrolyte and Solid-State Devices, J. Phys. Chem. B, Vol. 107, (2003).
DOI: 10.1021/jp034793y
Google Scholar