A Review of Latent Heat Thermal Energy Storage Systems

Article Preview

Abstract:

Thermal Energy Storage (TES) has become extremely important in the recent years since it balances the energy demand and improves the efficiency of the solar systems. It is important that the thermal energy storage systems have the necessary characteristics to improve the performance of the storage. Usage of Phase Change Materials (PCM) for energy storage provides a great benefit but, their low thermal conductivity becomes a major drawback. This can be compensated with the use of phase change material in an appropriate design for successful functioning of the system. This review article summarizes the recent designs of thermal energy storage systems containing Phase Change Material that have been adopted for efficient energy storage.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-42

Citation:

Online since:

August 2015

Export:

Price:

* - Corresponding Author

[1] E. Talmatsky, A. Kribus, PCM storage for solar DHW: An unfulfilled promise?, Solar Energy. 82 (2008) 861-869.

DOI: 10.1016/j.solener.2008.04.003

Google Scholar

[2] T. Kousksou, P. Bruel, G. Cherreau, V. Leoussoff, T. El Rhafiki, PCM storage for solar DHW: From an unfulfilled promise to a real benefit, Solar Energy. 85(2011) 2033–(2040).

DOI: 10.1016/j.solener.2011.05.012

Google Scholar

[3] M. Mazmana, L. F. Cabeza, H. Mehling, M. Nogues, H. Evliya, H. O. Paksoy, Utilization of phase change materials in solar domestic hot water systems, Renewable Energy. 34 (2009) 1639–1643.

DOI: 10.1016/j.renene.2008.10.016

Google Scholar

[4] F. Kuznik, J. Virgone, J. Noel, Optimization of a phase change material wallboard for building use, Applied Thermal Engineering. 28 (2008) 1291–1298.

DOI: 10.1016/j.applthermaleng.2007.10.012

Google Scholar

[5] P.W. Griffiths, P.C. Eames, Performance of chilled ceiling panels using phase change material slurries as the heat transport medium, Applied Thermal Engineering. 27 (2007) 1756–1760.

DOI: 10.1016/j.applthermaleng.2006.07.009

Google Scholar

[6] G. Zhou, Y. Zhang, Q. Zhang, K. Lin, H. Di, Performance of a hybrid heating system with thermal storage using shape-stabilized phase-change material plates, Applied Energy. 84 (2007)1068–1077.

DOI: 10.1016/j.apenergy.2006.09.015

Google Scholar

[7] C. Zhang, Y. Chen, L. Wu, M. Shi, Thermal response of brick wall filled with phase change materials (PCM) under fluctuating outdoor temperatures, Energy and Buildings. 43 (2011) 3514–3520.

DOI: 10.1016/j.enbuild.2011.09.028

Google Scholar

[8] A. Kocaa, H. F. Oztopb, T. l Koyunc, Y. Varol, Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector, Renewable Energy. 33 (2008) 567–574.

DOI: 10.1016/j.renene.2007.03.012

Google Scholar

[9] K. Azzouz, D. Leducq, D. Gobin, Performance enhancement of house hold refrigerator by addition of latent heat storage, International Journal of Refrigeration. 31(2008) 892-901.

DOI: 10.1016/j.ijrefrig.2007.09.007

Google Scholar

[10] B. Gin, M. M. Farid, The use of PCM panels to improve storage condition of frozen food, Journal of Food Engineering. 100 (2010) 372-376.

DOI: 10.1016/j.jfoodeng.2010.04.016

Google Scholar

[11] Y.T. Yang, Y.H. Wang, Numerical simulation of three-dimensional transient cooling application on a portable electronic device using phase change material, International Journal of Thermal Sciences. 51 (2012) 155-162.

DOI: 10.1016/j.ijthermalsci.2011.08.011

Google Scholar

[12] Z.A. Hammou, M. Lacroix, A new PCM storage system for managing simultaneously solar and electric energy, Energy and Buildings. 38 (2006) 258-265.

DOI: 10.1016/j.enbuild.2005.06.008

Google Scholar

[13] S. Karthikeyan, R. Velraj, Numerical investigation of packed bed storage unit filled with PCM encapsulated spherical containers - A comparison between various mathematical models, International Journal of Thermal Sciences. 60 (2012) 153-160.

DOI: 10.1016/j.ijthermalsci.2012.05.010

Google Scholar

[14] H. Benli, A. Durmus, Performance analysis of a latent heat storage system with phase change material for a new designed solar collectors in greenhouse heating, Solar Energy. 83 (2009) 2109-2119.

DOI: 10.1016/j.solener.2009.07.005

Google Scholar

[15] N.H.S. Tay, M. Belusko, F. Bruno, Experimental investigation of tubes in a phase change thermal energy storage system, Applied Energy. 90 (2012) 288–297.

DOI: 10.1016/j.apenergy.2011.05.026

Google Scholar

[16] Jundika C. Kurnia, Agus P. Sasmito, Sachin V. Jangam, Arun S. Mujumdar, Improved design for heat transfer performance of a novel phase change material (PCM) thermal energy storage (TES), Applied Thermal Engineering. 50 (2013) 896-907.

DOI: 10.1016/j.applthermaleng.2012.08.015

Google Scholar

[17] A.D. Gracia, E. Oro, M.M. Farid, L.F. Cabeza, Thermal analysis of including phase change material in a domestic hot water cylinder, Applied Thermal Engineering. 31 (2011) 3938-3945.

DOI: 10.1016/j.applthermaleng.2011.07.043

Google Scholar

[18] M.J. Kabbara, N. Ben Abdallah, Experimental investigation on phase change material based thermal energy storage unit, Procedia Computer Science. 19 (2013) 694 – 701.

DOI: 10.1016/j.procs.2013.06.092

Google Scholar

[19] A. Castell, C. Sole, M. Medrano, J. Roca, L. F. Cabeza, D. Garcia, Natural convection heat transfer coefficients in phase change material(PCM) modules with external vertical fins, Applied thermal engineering. 28 (2008) 1676-1686.

DOI: 10.1016/j.applthermaleng.2007.11.004

Google Scholar

[20] Wei-Biao Ye, Dong-Sheng Zhu, Nan Wang, Numerical simulation on phase-change thermal storage/release in a plate-fin unit, Applied Thermal Engineering. 31 (2011) 3871-3884.

DOI: 10.1016/j.applthermaleng.2011.07.035

Google Scholar

[21] E.M. Languri, C.O. Aigbotsua, J. L. Alvarado, Latent thermal energy storage system using phase change material in corrugated enclosures, Applied Thermal Engineering. 50 (2013) 1008-1014.

DOI: 10.1016/j.applthermaleng.2012.07.012

Google Scholar

[22] X.Q. Wang, A.S. Mujumdar, C. Yap, Effect of orientation for phase change material (PCM)-based heat sinks for transient thermal management of electric components, International Communications in Heat and Mass Transfer. 34 (2007) 801–808.

DOI: 10.1016/j.icheatmasstransfer.2007.03.008

Google Scholar

[23] R. Kandasamy, X.Q. Wang, Arun S. Mujumdar, Transient cooling of electronics using phase change material (PCM)-based heat sinks, Appl. Therm. Engg. 28 (2008)1047–1057.

DOI: 10.1016/j.applthermaleng.2007.06.010

Google Scholar

[24] G. Setoh, F.L. Tan, S.C. Fok, Experimental studies on the use of a phase change material for cooling mobile phones, International Communications in Heat and Mass Transfer. 37 (2010)1403–1410.

DOI: 10.1016/j.icheatmasstransfer.2010.07.013

Google Scholar

[25] R. Baby, C. Balaji, Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling, International Journal of Heat and Mass Transfer. 55 (2012) 1642–1649.

DOI: 10.1016/j.ijheatmasstransfer.2011.11.020

Google Scholar

[26] S.C. Fok, W. Shen, F.L. Tan, Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks, Int. Journal of Therm. Sciences. 49(2010) 109–117.

DOI: 10.1016/j.ijthermalsci.2009.06.011

Google Scholar

[27] Maciej Jaworski, Thermal performance of heat spreader for electronics cooling with incorporated phase change material, Applied. Thermal. Engineering. 35 (2012) 212-219.

DOI: 10.1016/j.applthermaleng.2011.10.036

Google Scholar

[28] S.F. Hosseinizadeh, F.L. Tan, S.M. Moosania, Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins, Applied Thermal Engineering. 31 (2011) 3827-3838.

DOI: 10.1016/j.applthermaleng.2011.07.031

Google Scholar

[29] Fuqiao Wang, Graeme Maidment, John Missenden, Robert Tozer, The novel use of phase change materials in refrigeration plant. Part 1: Experimental investigation, Applied Thermal Engineering. 27 (2007) 2893–2901.

DOI: 10.1016/j.applthermaleng.2005.06.011

Google Scholar

[30] M. Medrano, M.O. Yilmaz, M. Nogués, I. Martorell, Joan Roca, Luisa F. Cabeza, Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems, Applied Energy. 86 (2009) 2047–(2055).

DOI: 10.1016/j.apenergy.2009.01.014

Google Scholar

[31] M.J. Huang, P.C. Eames, S. Mccormack, P. Griffiths, N.J. Hewitt, Microencapsulated phase change slurries for thermal energy storage in a residential solar energy system, Renewable Energy. 36 (2011) 2932-2939.

DOI: 10.1016/j.renene.2011.04.004

Google Scholar

[32] V. Pandiyarajan, M. Chinna Pandian, E. Malan, R. Velraj, R.V. Seeniraj, Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system, Appl. Energy. 88 (2011)77–87.

DOI: 10.1016/j.apenergy.2010.07.023

Google Scholar

[33] F. Agyenim, P. Eames, M. Smyth, Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array, Renewable Energy. 35 (2010) 198–207.

DOI: 10.1016/j.renene.2009.03.010

Google Scholar

[34] M.J. Hosseini, A.A. Ranjbar, K. Sedighi, M. Rahimi, A combined experimental and computational study on the melting behavior of a medium temperature phase change storage material inside shell and tube heat exchanger, International Communications in Heat and Mass Transfer. 39 (2012).

DOI: 10.1016/j.icheatmasstransfer.2012.07.028

Google Scholar

[35] F.L. Tan, S.C. Fok, (2006), Cooling of helmet with phase change material, Applied Thermal Engineering. (26) 2067–(2072).

DOI: 10.1016/j.applthermaleng.2006.04.022

Google Scholar

[36] C. Hasse, M. Grenet, A. Bontemps, R. Dendievel, H. t Sallee, Realization, test and modelling of honeycomb wallboards containing a Phase Change Material, Energy and Buildings. 43 (2011) 232–238.

DOI: 10.1016/j.enbuild.2010.09.017

Google Scholar

[37] Y.C. Weng, H.P. Cho, C.C. Chang, Sih-Li Chen, Heat pipe with PCM for electronic cooling, Applied Energy. 88 (2011) 1825–1833.

DOI: 10.1016/j.apenergy.2010.12.004

Google Scholar

[38] H. Koizumi, Y. Jin, Performance enhancement of a latent heat thermal energy storage system using curved-slab containers, Appl. Therm. Engg. 37 (2012) 145-153.

DOI: 10.1016/j.applthermaleng.2011.11.009

Google Scholar

[39] X. Duan, G.F. Naterer, Heat transfer in phase change materials for thermal management of electric vehicle battery modules, International Journal of Heat and Mass Transfer. 53 (2010) 5176–5182.

DOI: 10.1016/j.ijheatmasstransfer.2010.07.044

Google Scholar

[40] K. E. Omari., T. Kousksou, Yves Le Guer, Impact of shape of container on natural convection and melting inside enclosures used for passive cooling of electronic devices, Appl. Therm. Engg. 31 (2011) 3022-3035.

DOI: 10.1016/j.applthermaleng.2011.05.036

Google Scholar