Photodegradation of Phenol Using TiO2 Nanotubular Thin Film Fabricated by Sonoelectrochemical Anodization

Article Preview

Abstract:

Photodegradation of phenol in aqueous solution was carried out using TiO2 nanotubular thin film. The TiO2 nanotubular thin film has been fabricated by sonoelectrochemical anodization process using a mixture of ethylene glycol and ammonium fluoride as electrolyte. The process was carried out at constant applied potential (20 V) for 90 minutes. After anodization the TiO2 nanotubular film was annealed at 500 °C for 2 hours and characterized using SEM and EDX to study morphology and chemical element compositions. SEM analyses revealed that the fabricated thin film had tubular structure with the diameter between 45 – 64 nm and 6.8 um in length composed of titanium and oxygen elements were determined by EDX. The fabricated TiO2 nanotubular thin film showed high photocatalytic activity with 80.70 % phenol degradation after 5 hours irradiation with UV light.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-31

Citation:

Online since:

October 2015

Export:

Price:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.H. Lin and R.S. Juang: Journal of Environmental Management Vol. 90 (2009), p.1349.

Google Scholar

[2] G. Busca, S. Berardinelli, C. Resini, L. Arrighi: Journal of Hazardous Materials, Vol. 160 (2008), p.265.

Google Scholar

[3] N.C. Saha, F. Bhunia, A. Kaviraj: Bull. Environ. Contam. Toxicol., Vol. 63 (1999), p.195.

Google Scholar

[4] K. Lina, J. Pana, Y. Chena, R. Chenga and X. Xua: Journal of Hazardous Materials, Vol. 161 (2009), p.231.

Google Scholar

[5] M. Bajaj, C. Gallert, J. Winter: Bioresource Technology, Vol. 99 (2008), p.8376.

Google Scholar

[6] M. H. Razali, R. Che Ali, , W. M. K., Wan Mohd Zain: Journal of Sustainability Science and Management, Vol. 8 (2013), p.244.

Google Scholar

[7] M. Saquib, M. Muneer: Dyes Pigment, Vol. 56 (2003), p.37.

Google Scholar

[8] Y. W. Wen, I. Agus, K. Young, Water Research Vol. 42 (2008), p.4725.

Google Scholar

[9] N. Venkatachalam, M. Palanichamy, V. Murugesan: Journal of Molecular Catalysis A: Chemical, Vol. 273 (2007), p.177.

Google Scholar

[10] V. B. Dmitry, N. P. Valentin, A. L. Alexei, C. W. Frank: Journal of Materials Chemistry. Vol. 14 (2004), p.3370.

Google Scholar

[11] S. Yoriya, M. Paulose, O.K. Varghese, G.K. Mor, C.A. Grimes: J. Phys. Chem. C, Vol. 111 (2007), p.13770.

Google Scholar

[12] H. E Prakasam, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes: J. Physical Chemistry C, Vol. 111 (2007), p.7235.

Google Scholar

[13] J.M. Macak, H. Tsuchiya, P. Schmuki: Angew Chem., Int. Ed. Vol. 44 (2005), p.2100.

Google Scholar

[14] T.G. Leighton, The Acoustic Bubble; Academic Press: London, 1994, pp.531-555.

Google Scholar

[15] K.S. Suslick, S. J. Doktycz: Adv. Sonochem. Vol. 1 (1990), p.197.

Google Scholar

[16] S. Malato, J. Blanco, A. R. Fernández-Alba, A. Agüera: Chemosphere. Vol. 40 (2000), p.403.

DOI: 10.1016/s0045-6535(99)00267-2

Google Scholar

[17] M. H Razali, M.R. M Dris, N.N.S. M., Rudin: Journal of Sustainability Science and Management, Vol. 4 (2009), p.49.

Google Scholar

[18] X. Yin, F. Xin, F. Zhang, Y. Wang, X. Zhang: Eng. Sci.,. Vol. 23 (2006), p.1000.

Google Scholar