[1]
S.Q. Aziz et al., Leachate characterization in semi-aerobic and anaerobic sanitary landfills: a comparative study. Journal of environmental management, 91(12) (2010) pp.2608-2614.
DOI: 10.1016/j.jenvman.2010.07.042
Google Scholar
[2]
Y. Deng, J.D. Englehardt, Treatment of landfill leachate by the Fenton process. Water Research, 40(20) (2006) pp.3683-3694.
DOI: 10.1016/j.watres.2006.08.009
Google Scholar
[3]
P. Kjeldsen et al., Present and long-term composition of MSW landfill leachate: a review. Critical reviews in environmental science and technology, 32(4) (2002) pp.297-336.
DOI: 10.1080/10643380290813462
Google Scholar
[4]
T.H. Christensen et al., Biogeochemistry of landfill leachate plumes. Applied geochemistry, 16(7) (2001) pp.659-718.
DOI: 10.1016/s0883-2927(00)00082-2
Google Scholar
[5]
I.A. Patel, H.H. Desai, Ammonium Removal from Landfill Leachate by Chemical Precipitation. International Journal of Innovative Research and Development, 3(7) (2014).
Google Scholar
[6]
D.I. Massé, R. Rajagopal, and G. Singh, Technical and operational feasibility of psychrophilic anaerobic digestion biotechnology for processing ammonia-rich waste. Applied Energy, 120 (2014) pp.49-55.
DOI: 10.1016/j.apenergy.2014.01.034
Google Scholar
[7]
Apha, A., WPCF. 1989. Standard methods for the examination of water and wastewater, 17 (2005).
Google Scholar
[8]
A. Pivato, R. Raga, Tests for the evaluation of ammonium attenuation in MSW landfill leachate by adsorption into bentonite in a landfill liner. Waste management, 26(2) (2006) pp.123-132.
DOI: 10.1016/j.wasman.2005.03.009
Google Scholar
[9]
H.A. Aziz et al., Removal of high-strength colour from semi-aerobic stabilized landfill leachate via adsorption on limestone and activated carbon mixture. Research Journal of Chemical Sciences ISSN, 2231 (2011) p.606.
Google Scholar
[10]
H.A. Aziz et al., Colour removal from landfill leachate by coagulation and flocculation processes. Bioresource technology, 98(1) (2007) pp.218-220.
DOI: 10.1016/j.biortech.2005.11.013
Google Scholar
[11]
Y. Deng, J.D. Englehardt, Electrochemical oxidation for landfill leachate treatment. Waste management, 27(3) (2007) pp.380-388.
DOI: 10.1016/j.wasman.2006.02.004
Google Scholar
[12]
C. Tizaoui et al., Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems. Journal of hazardous materials, 140(1) (2007) pp.316-324.
Google Scholar
[13]
I. Ozturk et al., Advanced physico-chemical treatment experiences on young municipal landfill leachates. Waste management, 23(5) (2003) pp.441-446.
DOI: 10.1016/s0956-053x(03)00061-8
Google Scholar
[14]
A. Mojiri et al., Powdered ZELIAC augmented sequencing batch reactors (SBR) process for co-treatment of landfill leachate and domestic wastewater. Journal of environmental management, 139 (2014) pp.1-14.
DOI: 10.1016/j.jenvman.2014.02.017
Google Scholar
[15]
T. Jorgensen, L. Weatherley, Ammonia removal from wastewater by ion exchange in the presence of organic contaminants. Water Research, 37(8) (2003) pp.1723-1728.
DOI: 10.1016/s0043-1354(02)00571-7
Google Scholar
[16]
S.Q. Aziz et al., Landfill leachate treatment using powdered activated carbon augmented sequencing batch reactor (SBR) process: Optimization by response surface methodology. Journal of hazardous materials, 189(1) (2011) pp.404-413.
DOI: 10.1016/j.jhazmat.2011.02.052
Google Scholar
[17]
A. Uygur, F. Kargı, Biological nutrient removal from pre-treated landfill leachate in a sequencing batch reactor. Journal of environmental management, 71(1) (2004) pp.9-14.
DOI: 10.1016/j.jenvman.2004.01.002
Google Scholar