Crash Test of Carbon Composite

Article Preview

Abstract:

Composite structures are now increasingly used for their properties in all areas of industrial production where high specific strength is demanded. They gradually replace metal parts and components not only because they are lighter, but above all for their comparable and in many ways even better mechanical properties. Knowledge of behavior of simple synergies between the fibres and the matrix allows the prediction of behavior of complex components and their application in practice. The subject of this article is a description of an experiment and numerical model, that compares the mechanical properties of carbon fiber composite with the values obtained using analytical models. Carbon composite samples were studied in laboratory conditions through Barrier test (ie. Crash test).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

385-391

Citation:

Online since:

January 2016

Export:

Price:

* - Corresponding Author

[1] M. Petru, M. Syrovatkova, T. Martinec, P. Lepsik: Analysis of changes in the surface quality of a UD prepregs composite due to mechanical loading, Mat. Sci. Forum, 818, pp.109-112, (2015).

DOI: 10.4028/www.scientific.net/msf.818.109

Google Scholar

[2] M. Petru, J. Broncek, P. Lepsik, O. Novak: Experimental and numerical analysis of crack propagation in light composite materials under dynamic fracturing, Komunikacie, 16 (3A), pp.82-89, (2014).

DOI: 10.26552/com.c.2014.3a.82-89

Google Scholar

[3] D. Gay, S.V. Hoa: Composite materials – design and applications, CRC press, Taylor & Francis Group London, p.550, 2007, ISBN: 978-1-4200-4519-2.

Google Scholar

[4] J.C. Halpin, J.L. Kardos. The Halpin-Tsai equations: A review, Polymer Engineering and Science, Vol. 16(5), (1976).

Google Scholar

[5] Z. Gürdal, R. T. Haftka, P. Hajela: Design and Optimization of Laminated Composite Materials, John Wiley & Sons, London, New York, p.352, ISBN 978-0-471-25276-4.

Google Scholar

[6] C.C. Chamis. Mechanics of composite materials: past, present, and future. Journal of Composites, Technology and Research, Vol. 11 (1), pp.3-14, DOI: 10. 1520/CTR10143J.

Google Scholar

[7] M. Petrů, O. Novák, P. Lepšík, D. Myšáková: Experimental Analysis and Numerical Modelling of Interphase Interfaces of New Environmental Low-Energy Composites, Applied Mechanics and Materials, Vol. 732, pp.95-98, February (2015).

DOI: 10.4028/www.scientific.net/amm.732.95

Google Scholar

[8] A. Lufinka, M. Petrů: Determination of the composite tube mechanical properties, EAN 2014, Marianske Lazne, Czech Republic, June (2014).

Google Scholar

[9] L. Ševčík, P. Tůma, M. Petrů, T. Martinec, R. Kovář, Composite reinforcement, Patent Application no. 2013-1066, (2013).

Google Scholar

[10] T. Martinec, J. Mlýnek, M. Petrů, Calculation of the robot trajectory for the optimum directional orientation of fibre placement in the manufacture of composite profile frames, Robotics and Computer-Integrated Manufacturing , vol. 35 (2015).

DOI: 10.1016/j.rcim.2015.02.004

Google Scholar