[1]
Information on http: /etd. lib. metu. edu. tr/upload/12611442/index. pdf.
Google Scholar
[2]
J. Kurzke: How to Get Component Maps for an Aircraft Gas Turbine's Performance Calculations, ASME Paper No: 96-GT-164 (1996).
Google Scholar
[3]
Q. Z. Al-Hamdan and M.S. Ebaid: Modeling and Simulation of a Gas Turbine Engine for Power Generation, Journal of Engineering for Gas Turbine and Power Vol. 128 (2006), 302-311.
DOI: 10.1115/1.2061287
Google Scholar
[4]
S. M. Camporeale, B. Fortunato and M. Mastrovito: A Modular Code for Real Time Dynamic Simulation of Gas Turbines in Simulink, Journal of Engineering for Gas Turbines and Power Vol. 128 (2006), 506-517.
DOI: 10.1115/1.2132383
Google Scholar
[5]
G. Kocer and O. Uzol: Real-Time Simulation of a Small Turbojet Engine, Proceeding of 4th Ankara International Aerospace Conference, Ankara (2007).
Google Scholar
[6]
G. Sieros, A. Stamatis and K. Mathioudakis: Jet Engine Component Maps for Performance Modeling and Diagnosis, Journal of Propulsion and Power Vol. 13, (1997), 665–674.
DOI: 10.2514/2.5218
Google Scholar
[7]
P. Moraal and I. Kolmanovsky: Turbocharger Modeling for Automotive Control Application, SAE Technical Paper Series Vol. 108 (1999), 1324–1338.
DOI: 10.4271/1999-01-0908
Google Scholar
[8]
M. Orkisz and S. Stawarz: Modeling of Turbine Engine Axial-Flow Compressor and Turbine Characteristics", Journal of Propulsion and Power Vol. 16 (2000), 336–339.
DOI: 10.2514/2.5574
Google Scholar
[9]
P. Ailer, I. Santa, G. Szederkenyi and K.M. Hangos: Non-Linear Model-Building of a Low-Power Gas Turbine, PeriodicaPolytechnicaSer. Transportation Engineering Vol. 29 (2001), 117-135.
Google Scholar
[10]
C. D. Kong, S. Kho and J.Y. Ki: Component Map Generation of a Gas Turbine Using Genetic Algorithms, Journal of Engineering for Gas Turbines and Power Vol. 128 (2006), 92–96.
DOI: 10.1115/1.2032431
Google Scholar
[11]
C. D. Kong and J.Y. Ki: Components Map Generation of Gas Turbine Engine Using Genetic Algorithms and Engine Performance Deck Data, Journal of Engineering Gas Turbines and Power, Vol. 129 (2007), 312–317.
DOI: 10.1115/1.2436561
Google Scholar
[12]
C. Bao, M. Ouyang, and B. Yi: Modeling and Optimization of the Air System in polymer Exchange Membrane Fuel Cell System, Journal of Power Sources, Vol. 156 (2006), 232–243.
DOI: 10.1016/j.jpowsour.2005.06.008
Google Scholar
[13]
Y. Yu, L. Chen, F. Sun and C. Wu: Neural Network Based Analysis and Prediction of a Compressor's Characteristic Performance Map, Journal of Applied Energy, Vol. 84(2007), 48–55.
DOI: 10.1016/j.apenergy.2006.04.005
Google Scholar
[14]
K. Ghorbanian and M. Gholamrezaei: Neural Network Modeling of Axial Flow Compressor Off-Design Performance, Proceeding of 10th Fluid Dynamic Conference Yazd, Iran(2006).
Google Scholar
[15]
K. Ghorbanian and M. Gholamrezaei: Neural Network Modeling of Axial Flow Compressor Performance Map, Proceeding of 45th AIAA Aerospace Science Meeting and Exhibit Reno, USA(2006).
DOI: 10.2514/6.2007-1165
Google Scholar
[16]
K. Ghorbanian and M. Gholamrezaei: Axial Compressor Performance Map Prediction Using Artificial Neural Network, ASME Paper No: GT2007-27165, Montreal, Canada(2007).
DOI: 10.1115/gt2007-27165
Google Scholar
[17]
K. Ghorbanian and M. Gholamrezaei: An Artificial Neural Network Approach to Compressor Performance Prediction, Journal of Applied Energy, Vol. 86(2009), 1210-1221.
DOI: 10.1016/j.apenergy.2008.06.006
Google Scholar
[18]
K. Ghorbanian and M. Gholamrezaei: Compressor Map Generation Using Feed Forward Neural Network, Journal of Power and Energy Vol. 223(2009).
Google Scholar
[19]
A. Lazzaretto and A. Toffolo: Analytical and Neural-Network Models for Gas Turbine Design and Off-Design Simulation, International Journal of Thermodynamics Vol. 4(2010), 173-182.
Google Scholar
[20]
S. Sanaye, M. Dehghandokht, H. Mohammadbeigi and S. Bahrami: Modeling of Rotary Vane Compressor Applying Artificial Neural Network, International Journal of Refrigeration, Vol. 34 (2011), 764-772.
DOI: 10.1016/j.ijrefrig.2010.12.007
Google Scholar
[21]
K. Ghorbanian and M. Gholamrezaei: Application of Fuzzy Logic to Axial Compressor Performance Map Prediction, Proceeding of ASME Power 2007, Texas, USA(2007).
DOI: 10.1115/power2007-22174
Google Scholar
[22]
F. Chu, F. Wang, X. Wang and S. Zhang: Performance Modeling of Centrifugal Compressor Using Kernel Partial Least Squares, Journal ofApplied Thermal Engineering Vol. 44(2012), 90-99.
DOI: 10.1016/j.applthermaleng.2012.03.043
Google Scholar
[23]
I. Yazar, E. Kiyak and F. Caliskan: A New Approach for TurbomachineryModelling by Using ANFIS Structure, Proceeding of 6th Exergy-Energy and Environment Symposium- IEEES6, Rize, Turkey(2013).
Google Scholar
[24]
Information on http: /digitalcommons. calpoly. edu/cgi/viewcontent. cgi?article=1028&context=aerosp.
Google Scholar
[25]
D. W. Kang, T. S. Kim H.B. Hurand J.K. Park: The Effect of Firing Biogas on the Performance and Operating Characteristics of Simple and Recuperative Cycle Gas Turbine Combined Heat and Power Systems, Journal of Applied Energy Vol. 93(2012).
DOI: 10.1016/j.apenergy.2011.12.038
Google Scholar
[26]
Information on https: /etd. ohiolink. edu/ap: 0: 0: APPLICATION_PROCESS=DOWNLOAD_ETD_SUB_DOC_ACCNUM: F1501_ID: toledo1271367584, attachment.
Google Scholar
[27]
J. R. Jang: ANFIS: Adaptive-Network-Based Fuzzy Inference System, Journal of IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23(1993), 665-685.
DOI: 10.1109/21.256541
Google Scholar
[28]
Information on http: /www. mathworks. com.
Google Scholar
[29]
T. Takagi and M. Sugeno: Derivation of Fuzzy Control Rules From Human Operator's Control Actions, Proceeding of IFAC Symposium on Fuzzy Information, Knowledge Representation and Decision Analysis(1983), 55-60.
DOI: 10.1016/s1474-6670(17)62005-6
Google Scholar