Development of Stand for Testing Electrochemical Permeation (STEP) of Hydrogen through Metal Foils

Article Preview

Abstract:

Experimental Stand for Testing Electrochemical Permeation (STEP) of hydrogen through metal foils was constructed and described in this paper. Hydrogen diffusion coefficients in different metal foils at room temperature can be determined by using STEP. Influence of pulsed electron beam irradiation on hydrogen diffusion coefficient in zirconium alloy E110 was investigated. It was established that treatment by pulsed electron beam with the energy density of 18 J/cm2, by three impulses with duration 50 μs leads to a decrease in the diffusion coefficient of hydrogen on the order of one. This is due to the fact that structure with more branched crystals’ boundary formed after irradiation and such structure is effective trap for hydrogen. Also there is formation of protective oxide film after irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

224-228

Citation:

Online since:

February 2015

Export:

Price:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.M. Lider, N.S. Pushilina, V.N. Kudiiarov, Investigation of hydrogen distribution from the surface to the depth in technically pure titanium alloy with the help of Glow Discharge Optical Emission Spectroscopy, Adv. Mech. Mater. 302 (2013) 92-96.

DOI: 10.4028/www.scientific.net/amm.302.92

Google Scholar

[2] V.N. Kudiiarov, L.V. Gulidova, N.S. Pushilina, A.M. Lider, Application of automated complex Gas Reaction Controller for hydrogen storage materials investigation, Adv. Mater. Res. 740 (2013) 690-693.

DOI: 10.4028/www.scientific.net/amr.740.690

Google Scholar

[3] Y.S. Bordulev, R.S. Laptev, V.N. Kudiiarov, A.M. Lider, Investigation of commercially pure titanium structure during accumulation and release of hydrogen by means of positron lifetime and electrical resistivity measurements, Adv. Mater. Res. 880 (2014).

DOI: 10.4028/www.scientific.net/amr.880.93

Google Scholar

[4] V.N. Kudiiarov, A.M. Lider, S.Y. Harchenko, Hydrogen accumulation in technically pure titanium alloy at saturation from gas atmosphere, Adv. Mater. Res. 880 (2014) 68-73.

DOI: 10.4028/www.scientific.net/amr.880.68

Google Scholar

[5] V.N. Kudiiarov, A.M. Lider, N.S. Pushilina, Hydrogen redistribution in technically pure titanium alloy under X-ray exposure at room temperature, Adv. Mater. Res. 880 (2014) 74-79.

DOI: 10.4028/www.scientific.net/amr.880.74

Google Scholar

[6] R.S. Laptev, Y.S. Bordulev, V.N. Kudiiarov, A.M. Lider, G.V. Garanin, Positron annihilation spectroscopy of defects in commercially pure titanium saturated with hydrogen, Adv. Mater. Res. 880 (2014) 134-140.

DOI: 10.4028/www.scientific.net/amr.880.134

Google Scholar

[7] A.M. Lider, V.V. Larionov, K.V. Kryoning, Hydrogen migration in metals under the combined action of acoustic and ionizing radiation, Tech. Phys. 56 (2011) 1630-1634.

DOI: 10.1134/s1063784211110168

Google Scholar

[8] L.V. Gulidova, V.N. Kudiiarov, A. M Lider, The Investigation of Hydrogen Sorption-desorption by Carbon Material with Content of Carbon Nanotubes / 7th International Forum on Strategic Technology (IFOST - 2012): Proceedings: in 2 vol., Tomsk, September 18-21, 2012. - Tomsk: TPU Press, 2012 - Vol. 2 - pp.57-60.

DOI: 10.1109/ifost.2012.6357684

Google Scholar

[9] J. -H. Huang, Gaseous hydrogen embrittlement of a hydrided zirconium alloy, Metal. Mater. Trans. A 29 (1998) 1047-1056.

DOI: 10.1007/s11661-998-1014-0

Google Scholar

[10] Y.S. Kim, Stage I and II behaviors of delayed hydride cracking velocity in zirconium alloys, J. Alloys Comp. 453 (2008) 210-214.

DOI: 10.1016/j.jallcom.2006.11.197

Google Scholar

[11] A.D. Pogrebniak, D.I. Proskurovskii, Modification of metal surface layer properties using pulsed electron beams. Phys. Status Solidi A 145 (1994) 9-49.

DOI: 10.1002/pssa.2211450103

Google Scholar

[12] C. Dong, A.M. Wu, S.Z. Hao et al., Surface treatment by high current pulsed electron beam, Surf. Coat. Technol. 163-164 (2003) 620-624.

Google Scholar

[13] I.P. Chernov, S.V. Ivanova, K.V. Kryoning, N.N. Koval, V.V. Larionov, A.M. Lider, N.S. Pushilina, E.N. Stepanova, O.M. Stepanova, Y.P. Cherdantsev, Properties and structural state of the surface layer in a zirconium alloy modified by a pulsed electron beam and saturated by hydrogen, Tech. Phys. 57 (2012).

DOI: 10.1134/s1063784212030024

Google Scholar

[14] N.S. Pushilina, E.N. Stepanova, E.V. Chernova, A.M. Lider, I.P. Chernov, S.V. Ivanova, Effect of pulsed electron beam treatment and hydrogen on properties of zirconium alloy, Adv. Mech. Mater. 302 (2013) 66-71.

DOI: 10.4028/www.scientific.net/amm.302.66

Google Scholar

[15] J. McBreen, L. Nanis, W. Beck, Method for determination of the permeation rate of hydrogen through metal membranes, J. Electrochem. Soc. 113 (1966) 1218-1222.

DOI: 10.1149/1.3087209

Google Scholar

[16] B.H. Lim, H.S. Hong, K.S. Lee, Measurements of hydrogen permeation and absorption in zirconium oxide scales, J. Nucl. Mater. 312 (2003) 134-140.

DOI: 10.1016/s0022-3115(02)01556-8

Google Scholar

[17] Y.F. Cheng, Analysis of electrochemical hydrogen permeation through X-65 pipeline steel and its implications on pipeline stress corrosion cracking, Int. J. Hydrogen Energy. 32 (2007) 1269-1276.

DOI: 10.1016/j.ijhydene.2006.07.018

Google Scholar

[18] S.J. Kim, D.W. Yun, D.W. Suh, K.Y. Kim, Electrochemical hydrogen permeation measurement through TRIP steel under loading condition of phase transition, J. Electrochem. Soc. 24 (2012) 112-115.

DOI: 10.1016/j.elecom.2012.09.002

Google Scholar

[19] I. Voloshchuk, T. Zakroczymski, Hydrogen entry and absorption in ZrO2 coated iron studied by electrochemical permeation and desorption techniques, Int. J. Hydrogen Energy. 37 (2012) 1826-1835.

DOI: 10.1016/j.ijhydene.2011.09.128

Google Scholar

[20] S. Frappart, X. Feaugas, J. Creus, F. Thebault, L. Delattre, H. Marchebois, Study of the hydrogen diffusion and segregation into Fe-C-Mo martensitic HSLA steel using electrochemical permeation test, J. Phys. Chem. Sol. 71 (2010) 1467-1479.

DOI: 10.1016/j.jpcs.2010.07.017

Google Scholar

[21] S. Frappart, A. Oudriss, X. Feaugas, J. Creus, J. Bouhattate, F. Thebault, L. Delattre, H. Marchebois, Hydrogen trapping in martensitic steel investigated using electrochemical permeation and thermal desorption spectroscopy, Scrip. Mat. 65 (2011).

DOI: 10.1016/j.scriptamat.2011.07.042

Google Scholar

[22] P.V. Geld, R.A. Riabov, E.S. Kodes, Hydrogen and defects of the metal structure, Metal, Moscow, 1979 (in Russian).

Google Scholar