Investigation of Defects Accumulation in the Process of Hydrogen Sorption and Desorption

Article Preview

Abstract:

This paper is devoted to the defect structure study of commercially pure titanium after hydrogen sorption-desorption cycles by means of positron lifetime (PL) and Doppler broadening spectrometry. Material was loaded with hydrogen from the gas phase till the concentration of hydrogen reached the value of 0.05 wt.% for each cycle. The essential changes in the positron annihilation characteristics of the sample are occurred after the each stage of treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

328-334

Citation:

Online since:

February 2015

Export:

Price:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Wang, The use of titanium for medical applications in the USA, Mater. Sci. Eng., A. 213 (1996) 134-137.

Google Scholar

[2] I. Gurrappa, Characterization of titanium alloy Ti-6Al-4V for chemical and industrial applications, Mat. Charact. 51 (2003) 131-139.

DOI: 10.1016/j.matchar.2003.10.006

Google Scholar

[3] R. W. Schutz, H. B. Watkins, Recent developments in titanium alloy application in the energy industry, Mater. Sci. Eng., A. 243, 1-2 (1998) 305-315.

DOI: 10.1016/s0921-5093(97)00819-8

Google Scholar

[4] M. Yamada, An overview on the development of titanium alloys for non-aerospace application in Japan, Mater. Sci. Eng., A. 213, 1-2 (1996) 8-15.

Google Scholar

[5] V. Madina, I. Azkarate, Compatibility of materials with hydrogen. Particular case: hydrogen embrittlement of titanium alloys, Int. J. Hydrogen Energ. 34 (2009) 5976-5980.

DOI: 10.1016/j.ijhydene.2009.01.058

Google Scholar

[6] C. P. Liang, H. R. Gong, Fundamental influence of hydrogen on various properties of alpha-titanium, Int. J. Hydrogen Energ. 35 (2010) 3812-3816.

DOI: 10.1016/j.ijhydene.2010.01.080

Google Scholar

[7] A. M. Lider, N. S. Pushilina, V. N. Kudiiarov, Investigation of hydrogen distribution from the surface to the depth in technically pure titanium alloy with the help of Glow Discharge Optical Emission Spectroscopy, Adv. Mech. Mater. 02 (2013).

DOI: 10.4028/www.scientific.net/amm.302.92

Google Scholar

[8] A.M. Lider, V.V. Larionov, K.V. Kryoning, Hydrogen migration in metals under the combined action of acoustic and ionizing radiation, Tech. Phys. 56 (2011) 1630-1634.

DOI: 10.1134/s1063784211110168

Google Scholar

[9] V.N. Kudiiarov, A.M. Lider, S.Y. Harchenko, Hydrogen accumulation in technically pure titanium alloy at saturation from gas atmosphere, Adv. Mater. Res. 880 (2014) 68-73.

DOI: 10.4028/www.scientific.net/amr.880.68

Google Scholar

[10] Y.S. Bordulev, R.S. Laptev, V.N. Kudiiarov, A.M. Lider, Investigation of commercially pure titanium structure during accumulation and release of hydrogen by means of positron lifetime and electrical resistivity measurements, Adv. Mater. Res. 880 (2014).

DOI: 10.4028/www.scientific.net/amr.880.93

Google Scholar

[11] R.S. Laptev, Y.S. Bordulev, V.N. Kudiiarov, A.M. Lider, G.V. Garanin, Positron annihilation spectroscopy of defects in commercially pure titanium saturated with hydrogen, Adv. Mater. Res. 880 (2014) 134-140.

DOI: 10.4028/www.scientific.net/amr.880.134

Google Scholar

[12] V.N. Kudiiarov, L.V. Gulidova, N.S. Pushilina, A.M. Lider, Application of automated complex Gas Reaction Controller for hydrogen storage materials investigation, Adv. Mater. Res. 740 (2013) 690-693.

DOI: 10.4028/www.scientific.net/amr.740.690

Google Scholar

[13] V.N. Kudiiarov, A.M. Lider, N.S. Pushilina, Hydrogen redistribution in technically pure titanium alloy under X-ray exposure at room temperature, Adv. Mater. Res. 880 (2014) 74-79.

DOI: 10.4028/www.scientific.net/amr.880.74

Google Scholar

[14] D. Giebel, J. Kansy, LT10 program for solving basic problems connected with defect detection, Phys. Proc. 35 (2012) 122–127.

DOI: 10.1016/j.phpro.2012.06.022

Google Scholar

[15] D. Giebel, J. Kansy, A New Version of LT Program for Positron Lifetime Spectra Analysis, Mat. Sci. For. 666 (2010) 138-141.

DOI: 10.4028/www.scientific.net/msf.666.138

Google Scholar

[16] Information on http: /www. ifj. edu. pl/~mdryzek/page-1ro. htm.

Google Scholar

[17] L. Petrov, N. Nankov, E. Popov, T. Troev, Positron life time calculations of defect in α-iron containing hydrogen, AIP Conf. Proc. 996 (2008) 177-182.

DOI: 10.1063/1.2917008

Google Scholar

[18] R. Krause-Rehberg, and H. S. Leipner, Positron annihilation in semiconductors: defect studies, Springer, Berlin Heidelberg, New York, (2003).

Google Scholar

[19] E. Tal-Gutelmacher, D. Eliezer, E. Abramov, Thermal desorption spectroscopy (TDS) – Application in quantitative study of hydrogen evolution and trapping in crystalline and non-crystalline materials, Mater. Sci. Eng., A. 445-446 (2007) 625-631.

DOI: 10.1016/j.msea.2006.09.089

Google Scholar

[20] D.N. Krasnov, N.A. Evteeva, T.I. Sigfusson, V.S. Supchenko, Yu.I. Tyurin, I.P. Chernov, Hydrogen release from palladium and titanium stimulated by thermal and radioactive influence, Physics, 11/2 (2012) 251-255 (in Russian).

Google Scholar

[21] J. Čížek, O. Melikhova, Z. Barnovská, I. Procházka and R. K. Islamgaliev, Vacancy clusters in ultra-fine grained metals prepared by severe plastic deformation, J. Phys. Conf. Ser. 443 (2013) 23-26.

DOI: 10.1088/1742-6596/443/1/012008

Google Scholar

[22] J. Čížek, I. Procházka, S. Daniš1, W. Anwand, A. Mücklich, R. Gemma, Defect studies of hydrogen loaded Nb: bulk metals and thin films, Phys. Stat. Sol. 10 (2007) 3485-3488.

DOI: 10.1002/pssc.200675739

Google Scholar