Photo Oxidative Extractive Desulfurization of Model Oil Using Fe/TiO2 Photocatalyst and Eutectic Based Ionic Liquid: Effect of Metal Loading

Article Preview

Abstract:

Titanium dioxide (TiO2) photocatalyts doped with iron metal at different metal loadings were successfully prepared and characterized. The doped photocatalyst were characterized using diffuse reflectance spectroscopy (DR-UV-Vis), X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM).Photooxidative extractive desulfurization of model oil containing dibenzothiophene as the sulfur compound (100ppm) was investigated using the prepared photocatalyst. The photocatalyst with 0.20 wt% Fe metal loading showed the best sulfur removal at 61.13%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

664-668

Citation:

Online since:

January 2016

Export:

Price:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Diane, The sulfur problem, cleaning up industrial feedstock, Royal Society of Chemistry, Cambridge, United Kingdom (2000) 2-14.

Google Scholar

[2] I.V. Babich and J.A. Moulijn, Fuel 82 (2003) 607–631.

Google Scholar

[3] J. G. Speight, The desulfurization of oils and residua, Marcel Dekker, Inc., New York (2000) 25-30.

Google Scholar

[4] G. Zhang, F. Yu, and R. Wang, Fuel processing Technology 51(3) (2007) 196-207.

Google Scholar

[5] M. Aceituno, C. D. Stalikas, L. Lunar, S. Rubio, and D. Perez-Bendito, Water Research 36 (2002) 3582-3592.

DOI: 10.1016/s0043-1354(02)00061-1

Google Scholar

[6] A. N. Okte and S. Akah, ReacKinetMech Cat. 100 (2002) 55-60.

Google Scholar

[7] B. Zhao, G. Mele, I. Pio, J. Li, L. Palmisano, and G. Vasapollo, J. of Haz. Mat. 176 (2010) 569-574.

Google Scholar

[8] G. C. A. Kumbhar, Journal of Nanoparticle Research 7 (2005) 499-506.

Google Scholar

[9] M. Asiltürk, F. Sayılkan, and E. Arpac, Journal of Photochemistry and Photobiology A Chemistry 203 (2009) 64-71.

Google Scholar

[10] O. T. Morikawa, K. Suzuki, S. Moribe, and S. Tero-Kubota, Appl Catal B: Environ 83 (2008) 56-62.

Google Scholar

[11] L. Huaming, Z. Wenshuai, Y. Wang, J. Zhang, J. Dong Lu, and Y. Shengyan, Green Chem. 11 (2009) 810-815.

Google Scholar

[12] A. P. Abbott, P. M. Cullis, M. J. Gobson, R. C. Harris, and E. Raven, Green Chem. 83 (2007) 65-72.

Google Scholar

[13] A. Kumbhar and G. Chumanov, Journal of Nanoparticle Research 7 (2005) 489-498.

Google Scholar

[14] Y. Yalçın, Applied Catalysis B: Environmental 99 (2010) 469-477.

Google Scholar

[15] M. J. Kim, K. -D. Kim, H. O. Seo, Y. Luo, N. K. Dey, and Y. D. Kim, Applied Surface Science 257 (2011) 2489–2493.

Google Scholar

[16] N. D. Abazović, Mirenghi, Luciana, Janković, A. Ivana, Bibić, Nataša, Šojić, V. Daniela, Abramović, F. Biljana, Čomor, and I. Mirjana, Nanoscale Research Letters 4 (2009) 518-525.

DOI: 10.1007/s11671-009-9274-1

Google Scholar

[17] AEROXIDE and AEROPERL. Technical Information for Aeroxide and Aeroperl Titanium Dioxide as Photcatalyst 1-1243-0: 1-14 (2005).

Google Scholar

[18] A. Mehrdad and R. Hashemzadeh, Ultrasonics Sonochemistry 17 (2010) 168-172.

Google Scholar

[19] C. S. Lu, C. C. Chen, F. D. Mai, and H. K. Li, Journal of Hazardous Materials 165 (2009) 306-316.

Google Scholar

[20] P. Vijayan, C. Mahendiran, C. Suresh, and K. Shanthi, Catalysis Today 141 (2009) 220-224.

DOI: 10.1016/j.cattod.2008.04.016

Google Scholar

[21] S. Sun, J. Ding, J. Bao, C. Gao, Z. Qi, X. Yang, B. He, and C. Li, Applied Surface Science 258 (2012) 5031-5037.

Google Scholar

[22] N. Banić, B. Abramović, J. Krstić, D. Šojić, D. Lončarević, Z. Cherkezova-Zheleva, and V. Guzsvány, Applied Catalysis B: Environmental 107 (2011) 363-371.

DOI: 10.1016/j.apcatb.2011.07.037

Google Scholar