Effects of Powder Synthesis Method on the Sinterability of Hydroxyapatite

Article Preview

Abstract:

The sinterability of hydroxyapatite (HA) powder synthesized through a novel wet chemical method (HAp) and a wet mechanochemical method (HAwm) was investigated over a temperature range of 1000oC to 1400oC in terms of phase stability, bulk density, hardness and fracture toughness. The results indicated that the sinterability of HAp powder were significantly better than HAwm powder. Moreover, the XRD traces of HAwm sintered samples showed signs of decomposition into TTCP when sintered at 1300oC and above. Densification of ~98% of theoretical density was attained by HAp compacts at 1100oC while the HAwm compacts exhibited only ~96% of theoretical density even at 1350oC with no significant increase of density at 1400oC. The Vickers hardness of HAp showed increasing trend for temperature range of 1000oC to 1100oC with the compacts attaining HV of ~7 GPa at 1100oC. Subsequently, the hardness decreased with increasing sintering temperature though the value does not dropped below ~5 GPa. Similarly, HAwm compacts showed an increasing trend from 1000oC to 1300oC with the largest HV attained was ~4.57 GPa. Further increased in sintering temperature resulted in the decreased of Vicker’s hardness. Moreover, the HAp samples reached a maximum fracture toughness of ~0.9 MPam1/2 at 1050oC while the HAwm attained maximum KIc of only ~0.7 MPam1/2 at 1300oC.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 264-265)

Pages:

1538-1544

Citation:

Online since:

June 2011

Export:

Price:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Pramanik, S., Agarwal, A. K., Rai, K. N. & Garg, A. (2007). Development of high strength hydroxyapatite by solid-state sintering process. Ceram. Inter., Vol. 33, 419-426.

DOI: 10.1016/j.ceramint.2005.10.025

Google Scholar

[2] Best, S. M., Porter, A. E., Thian, E. S. & Huang, J. (2008). Bioceramics: Past, present and for the future. J. Eur. Ceram. Soc., 28, 1319-1327.

DOI: 10.1016/j.jeurceramsoc.2007.12.001

Google Scholar

[3] Calafiori, A. R., Di Marco, G., Martino, G. & Marotta, M. (2007). Preparation and characterization of calcium phospahte biomaterials. J. Mater. Sci.: Mater. Med., Vol. 18, 2331-2338.

DOI: 10.1007/s10856-007-3141-3

Google Scholar

[4] Cengiz, B., Gokce, Y., Yildiz, N., Aktas, Z. & Calimli, A. (2008). Synthesis and characterization of hydroxyapatite nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 322, 29-33.

DOI: 10.1016/j.colsurfa.2008.02.011

Google Scholar

[5] El Briak-BenAbdeslam, H., Ginebra, M. P., Vert, M. & Boudeville, P. (2008). Wet or dry mechanichemical synthesis of calcium phosphates? Influence of the water content on DCPC-CaO reaction kinetics. Acta Biomaterialia, Vol. 4, 378-386.

DOI: 10.1016/j.actbio.2007.07.003

Google Scholar

[6] Mobasherpour, I., Heshajin, M. S., Kazemzadeh, A. & Zakeri, M. (2007). Synthesis of nanocrystalline hydroxyaptite by using precipitation method. Journal of Alloys and Compounds, Vol. 430, 330-333.

DOI: 10.1016/j.jallcom.2006.05.018

Google Scholar

[7] Ramesh, S., Tan, C. Y., Sopyan, I., Hamdi, M. & Teng, W. D. (2007). Consolidation of nanocrystalline hydroxyapatite powder. Science and Technology of Advanced Materials, Vol. 8, 124-130.

DOI: 10.1016/j.stam.2006.11.002

Google Scholar

[8] Ramesh, S., Tan, C. Y., Bhaduri, S. B., Teng, W. D. & Sopyan, I. (2008). Densification behaviour of nanocrystalline hydroxyapatite bioceramics. Journal of Materials Processing Technology, Vol. 206, 221-230.

DOI: 10.1016/j.jmatprotec.2007.12.027

Google Scholar

[9] Bogdanoviciene, I., Beganskiene, A., Tonsuaadu, K., Glaser, J., Meyer, H. J. & Kareiva, A. (2006) Calcium hydroxyapatite, Ca10(PO4)6(OH)2 ceramics prepared by aqueous sol-gel processing. Mater. Res. Bull., Vol. 41, 1754-1762.

DOI: 10.1016/j.materresbull.2006.02.016

Google Scholar

[10] Ramesh, S. (2004). A method for manufacturing hydroxyapatite bioceramic, Malaysia Patent, No. PI. 20043325.

Google Scholar

[11] Rhee, S. H. (2002). Synthesis of hydroxyapatite via mechanochemical treatment. Biomaterials., Vol. 23, 1147-1152.

DOI: 10.1016/s0142-9612(01)00229-0

Google Scholar

[12] ASTM E384-99. (1999). Standard test method for micro-indentation hardness of materials. ASTM International.

Google Scholar

[13] ISO 14705. (2000). Fine ceramics (Advanced Ceramics, Advanced Technical Ceramics) – Test method for hardness of monolithic ceramics at room temperature.

DOI: 10.3403/30422952

Google Scholar

[14] Kong, L. B., Ma, J. & Boey, F. (2002). Nanosized hydroxyapatite powders derived from coprecipitation process. J. Mater. Sci., Vol. 37, 1131-1134.

Google Scholar

[15] Kothapalli, C., Wei, M., Vasiliev, A. & Shaw, M. T. (2004). Influence of temperature and concentration on the sintering behavior and mechanical properties of hydroxyapatite. Acta Materialia, Vol. 52, 5655-5663.

DOI: 10.1016/j.actamat.2004.08.027

Google Scholar

[16] Rodriguez-Lorenzo, L. M., Vallet-Regi, M. & Ferreira, J. M. F. (2001). Fabrication of hydroxyapatite bodies by uniaxial pressing from a precipitated powder. Biomaterials, Vol. 22, 583-588.

DOI: 10.1016/s0142-9612(00)00218-0

Google Scholar

[17] Yeong, K. C. B., Wang, J. & Ng, S. C. (2001). Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4. Biomaterials, Vol. 22, 2705-2712.

DOI: 10.1016/s0142-9612(00)00257-x

Google Scholar

[18] Gibson, I. R., Ke, S., Best, S. M. & Bonfield, W. (2001). Effect of powder characteristics on the sinterability of hydroxyapatite powders. J. Mater. Sci.: Mater. Med., Vol. 12, 163-171.

Google Scholar

[19] Mostafa, N. Y. (2005). Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes. Mater. Chem. Phy., Vol. 94, 333-341.

DOI: 10.1016/j.matchemphys.2005.05.011

Google Scholar

[20] Prokopiev, O. & Sevostianov, I. (2006). Dependence of the mechanical properties of sintered hydroxyapatite on the sintering temperature. Mater. Sci. Eng.: A, Vol. 431, 218-227.

DOI: 10.1016/j.msea.2006.05.158

Google Scholar

[21] Georgiou, G., Knowles, J. C. & Barralet, J. E. (2004). Dynamic shrinkage behaviour of hydroxyapatite and glass-reinforced hydroxyapatite. J. Mater. Sci., Vol. 39, 2205-2208.

DOI: 10.1023/b:jmsc.0000017788.20785.ff

Google Scholar

[22] He, L. H., Standard, O. C., Huang, T. T. Y., Latella, B. A. & Swain, M. V. (2008). Mechanical behaviour of porous hydroxyapatite. Acta Biomaterialia, Vol. 4, 577-586.

DOI: 10.1016/j.actbio.2007.11.002

Google Scholar

[23] Hoepfner, T. P. & Case, E. D. (2003). The influence of the microstructure on the hardness of sintered hydroxyapatite. Ceram. Int., Vol. 29, 699-706.

DOI: 10.1016/s0272-8842(02)00220-1

Google Scholar

[24] Li, S., Izui, H., Okano, M. & Watanabe, T. (2008). The effects of sintering temperature and pressure on the sintering behaviour of hydroxyapatite powder prepared by spark plasma sintering. Journal of Biomechanical Science and Engineering, Vol. 3.

DOI: 10.1299/jbse.3.1

Google Scholar

[1] 1-12.

Google Scholar

[25] Veljovic, Dj., Jokic, B., Petrovic, R., Palcevskis, E., Dindune, A., Mihailescu, I. N. & Janackovic, Dj. (2008). Processing of dense nanostructured HAP ceramics by sintering and hot pressing. Ceram. Int., Vol. 35.

DOI: 10.1016/j.ceramint.2008.07.007

Google Scholar

[4] 1345-1351.

Google Scholar