Light: The Rope Hypothesis

Article Preview

Abstract:

We propose a physical model that provides a rational interpretation to the fundamental properties of light. The Rope Hypothesis justifies and simulates basic features and behaviors such as straightness, speed, and orthogonality, and merges light with gravity into a single mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 433-440)

Pages:

5809-5814

Citation:

Online since:

January 2012

Authors:

Export:

Price:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Bohr, The Quantum postulate and the recent development of atomic theory, Nature (Supplement) 121, 1928, 580-590.

DOI: 10.1038/121580a0

Google Scholar

[2] A. Einstein, On a Heuristic Viewpoint Concerning the Production and Transformation of Light., Annalen der Physik 17, 1905, pp.132-148.

Google Scholar

[3] C. Fowler, The solid earth: an introduction to global geophysics, (2nd ed. ). Cambridge University Press., (2005).

Google Scholar

[4] F. Arago and A. Fresnel, Sur l'Action que les rayons de lumière polarisés exercent les uns sur les autres, Ann. Chim. et Phys. 10 (1819), 288-305.

Google Scholar

[5] M. Faraday, Experimental researches in electricity, (Bakerian lecture), Philos. Trans. R. Soc. London, 122, 1832, 163–177.

Google Scholar

[6] A. Ampère, Memoir on the Mathematical Theory of Electrodynamic Phenomena, Uniquely Deduced from Experience, 1827.

Google Scholar

[7] J. Maxwell, A dynamical theory of the electromagnetic field, Phil. Trans. 155, 1865, 459 – 512.

Google Scholar

[8] Z. Knittl, The use of the principle of reversibility in deriving known relations for a system of optical thin films, Czech. J. Phys. 7, (1957).

DOI: 10.1007/bf01689634

Google Scholar

[9] A. Mahan, A Mathematical Proof of Stokes' Reversibility Principle, J. Opt. Soc. Am. 33, 1943, 621-626.

DOI: 10.1364/josa.33.000621

Google Scholar

[10] A. Schuster, An Introduction to the Theory of Optics, London: Edward Arnold, (1904).

Google Scholar

[11] J. Williams, J. Dickey, Lunar Geophysics, Geodesy, and Dynamics, 13th International Workshop on Laser Ranging, October 7-11, 2002, Washington, D. C.

Google Scholar

[12] R. Baierlein, Newton to Einstein, Cambridge University Press, (2001).

Google Scholar

[13] F. Grimaldi, Physico mathesis de lumine, coloribus, et iride, aliisque annexis libri duo, Bologna, Italy: Vittorio Bonati, 1665, pages 1-11.

DOI: 10.1086/350461

Google Scholar

[14] T. Young, Phil. Trans. Roy. Soc. 12, London xcii, 1802, 387.

Google Scholar

[15] P. Merli, G. Missiroli, G. Pozzi, On the statistical aspect of electron interference phenomena, Am. J. Phys. 44, 1976a, 306-307.

DOI: 10.1119/1.10184

Google Scholar

[16] A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, Demonstration of single-electron buildup of an interference pattern, Am. J. Phys. 57 (2), 1989, 117-120.

DOI: 10.1119/1.16104

Google Scholar

[17] M. Born, P. Jordan, Zur Quantenmechanik, " Zeitschrift für Physik 34, 1925, 858-888. [Eng. Trans. in: B. L. van der Waerden, editor, "Sources of Quantum Mechanics, Dover Publications, (1968).

DOI: 10.1007/bf01328531

Google Scholar

[18] E. Einstein, B. Podolsky, N. Rosen, Can quantum mechanical description of physical reality be considered complete?, " Physic PhysicalReview 47, 1935, 777 777-780.

DOI: 10.1103/physrev.47.777

Google Scholar

[19] D. Bohm, Y. Aharonov, Discussion of Experimental Proof for the Paradox of Einstein, Rosen and Podolski, Physical Review 108: 1957, 1070-1076.

DOI: 10.1103/physrev.108.1070

Google Scholar

[20] H. Everett, 'Relative State' Formulation of Quantum Mechanics, Reviews of Modern Physics 29, 1957, 454-462.

DOI: 10.1103/revmodphys.29.454

Google Scholar

[21] J. Cramer, An Overview of the Transactional Interpretation, Int. J. of Theo. Phys. 27, 227, (1988).

Google Scholar

[22] H. Casimir, D. Polder, The Influence of Retardation on the London-van der Waals Forces, Phys. Rev. 73, 360, (1948).

DOI: 10.1103/physrev.73.360

Google Scholar