Freely-Suspended, Single Chamber Glucose Oxidase-Laccase Enzymatic Fuel Cell

Article Preview

Abstract:

We investigate glucose oxidase-laccase EFC employing simplified system design – freely suspended enzymes in a membraneless, single chamber cell. The highly specific enzyme reaction mechanisms permit such system design. The EFC comprises nickel mesh as the oxidative current collector and a carbon-based air electrode as the reductive current collector, enclosed in acrylic casing of 3 ml volumetric capacity. The air electrode also serves as the ambient oxygen diffusion site to continuously feed oxygen into the system. The anolyte consists of glucose oxidase enzyme (10 U), glucose substrate (200 mM) and FAD co-enzyme (3.8 mM), while the catholyte consists of laccase enzyme (10 U) and syringaldazine substrate (216 µM). The cell employing citrate buffer electrolyte of pH 5 exhibits the best characteristics i.e. an open circuit voltage (OCV) around 960 mV and able to sustain continuous discharge current of 30µA for about 31.75 hours. The cell possesses volumetric power density of 286 W/cm3 which is considered comparable to biocatalytic energy systems employing much more complicated design.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 512-515)

Pages:

1499-1502

Citation:

Online since:

May 2012

Export:

Price:

[1] S. D. Minteer, B.Y. Liaw and M. J. Cooney: Curr. Opin. Biotech. Vol. 18 (2007), p.228

Google Scholar

[2] R. A. Bullen, T. C. Arnot, J. B. Lakeman and F. C. Walsh: Biosens. Bioelectron. Vol. 21 (2006), p. (2015)

Google Scholar

[3] S. C. Barton, J. Gallaway and P. Atanassov: Chem. Rev. Vol. 104 (2004), p.4867

Google Scholar

[4] K. Murata, K. Kajiya, N. Nakamura and H. Ohno: Energy Environ. Sci. Vol. 2 (2009), p.1280

Google Scholar

[5] A. Heller: Anal. Bioanal Chem. Vol. 385 (2006), p.469

Google Scholar

[6] N. Kim, Y. Choi, S. Jung and S. Kim: Biotechnol. Bioeng. Vol. 70 (2000), p.109

Google Scholar

[7] A. Habrioux, G. Merle, K. Servat, K. B. Kokoh, C. Innocent, M. Cretin and S. Tingry : J. Electroanal. Chem. Vol. 622 (2008), p.97

DOI: 10.1016/j.jelechem.2008.05.011

Google Scholar

[8] N. Mano, H. H. Kim, Y. Zhang, and A. Heller: J. Am Chem. Soc. Vol. 124 (2002), p.6480

Google Scholar

[9] H. Wang: J. Microbiol. Biotechn. Vol. 20 (2010), p.1069

Google Scholar

[10] C. Chakkaravarthy, A.K. Abdul Waheed and H.V.K. Udupa: J. Power Sources Vol. 6 (1981), p.203

Google Scholar

[11] C. F. Thurston: Microbiology Vol. 140 (1994), p.19

Google Scholar

[12] S. C. Barton, M. Pickard, R. V-Dhuhalth and A. Heller: Biosens. Bioelectron. Vol. 17 (2002), p.1071

Google Scholar

[13] A. A. Ahmad, R. Othman, F. Yusuf and M. F. A. Wahab: IIUM Engin. J. Vol. 12 (2011), p.153

Google Scholar

[14] A. Ramanavicius, A. Kausaite and A. Ramanaviciene: Biosens. Bioelectron. Vol. 20 (2005), p.(1962)

Google Scholar

[15] N. Mano, F. Mao, A. Heller: J. Am. Chem. Soc. Vol. 125 (2003), p.6588

Google Scholar

[16] F. Barrière, P. Kavanagh and D. Leech: Electrochim. Acta Vol. 51 (2006) p.5187

Google Scholar