Friction Welding of Zr41Ti14Cu12.5Ni10Be22.5 Bulk Metallic Glass and Temperature Field Simulation

Article Preview

Abstract:

In order to enhance the application of bulk metallic glass (BMG) as engineer material, it is necessary to develop appropriate bonding technology to solve the problems of size limitation and weldability. In this work, a friction welding set-up was constructed, and the Zr41Ti14Cu12.5Ni10Be22.5 BMG rods were joined. The joint interface zone was examined by X-ray diffraction, Scanning electron microscope, Vickers Micro-hardness and Transmission electron microscope. The results showed that the BMG rods were successfully joined, where no crystallization and visible defects were observed. The welding joint maintained the amorphous structure except few nanocrystallines occurred. Then the temperature field simulation was executed using ANSYS finite element software to optimize the welding parameters. It indicated that friction time cannot exceed 0.25s under the given experiment conditions, otherwise the crystallization would occurred, which is in good agreement with the experiment. It is concluded that the temperature field simulation can be used to guide the experiment and the friction welding can be used to join the BMG.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

144-151

Citation:

Online since:

June 2012

Export:

Price:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Tsuyoshi, Recent progress in amorphous metallic materials in Japan, Mat. Sci. Eng. 179-180 (1994) 8-16.

Google Scholar

[2] M.F. Ashby, A.L. Greer, Metallic glasses as structural materials. Scripta Mater. 54 (2006) 321-326.

DOI: 10.1016/j.scriptamat.2005.09.051

Google Scholar

[3] W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses. Mat. Sci. Eng. 44 (2004) 45-89.

Google Scholar

[4] I. Akihisa, Stabilization and high strain-rate superplasticity of metallic supercooled liquid. Mat. Sci. Eng. 267 (1999) 171-183.

DOI: 10.1016/s0921-5093(99)00089-1

Google Scholar

[5] Y. Kawamura, et al., High-strain-rate superplasticity due to Newtonian viscous flow in La55Al25Ni20 metallic glass. Mater. T. Jim. 40 (1999) 794-803.

DOI: 10.2320/matertrans1989.40.794

Google Scholar

[6] J. Schroers, et al., Thermoplastic forming of bulk metallic glass—Applications for MEMS and microstructure fabrication. Mat. Sci. Eng. 449-451 (2007) 898-902.

DOI: 10.1016/j.msea.2006.02.398

Google Scholar

[7] T.C. Hufnagel, et al., Deformation and failure of Zr57Ti5Cu20Ni8Al10 bulk metallic glass under quasi-static and dynamic compression. J. Mater. Res. 17 (2002) 1441-1445.

DOI: 10.1557/jmr.2002.0214

Google Scholar

[8] C Yang, RP Liu, ZJ Zhan et al., Formation of ZrTiCuNiBe bulk metallic glass by shock-wave quenching. Appl. Phys. Lett. 87(2005).

DOI: 10.1063/1.2005367

Google Scholar

[9] Z.X. Wang, D.Q. Zhao, M. X. Pan et al., Formation and crystallization of CuZrHfTi bulk metallic glass under ambient and high pressures. J. Phys-Condens. Mat. 15 (2003. ) 5923-5932.

DOI: 10.1088/0953-8984/15/35/302

Google Scholar

[10] X. Zhang, et al., Bulk metallic glass rings prepared by a modified water quenching method. International Journal of Minerals, Metall. Mater. Trans. 16 (2009) 108-111.

DOI: 10.1016/s1674-4799(09)60018-2

Google Scholar

[11] W.F. Wu, Y. Li, Bulk metallic glass formation near intermetallic composition through liquid quenching, Appl. Phys. Lett. 95, 011906 (2009).

DOI: 10.1063/1.3168411

Google Scholar

[12] Y. Zhang, et al., Glass forming properties of Zr-based bulk metallic alloys. J. Non-Cryst. Solids. 315 (2003) 206-210.

DOI: 10.1016/s0022-3093(02)01876-8

Google Scholar

[13] J Schroers, R Busch, A Masuhr et al.: Proc LAM-10 International Conference on Liquid and Amorphous Metals No10, (Dortmund, ALLEMAGNE, August 30 1998). 250-52 (2) (1999) 699-703.

Google Scholar

[14] I. Akihisa, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta. Mater. 48 (2000) 279-306.

DOI: 10.1016/s1359-6454(99)00300-6

Google Scholar

[15] F. Jörg, L., Bulk metallic glasses. Intermetallics. 11 (2003) 529-540.

Google Scholar

[16] H.S. Shin, et al., Joining of Zr-based bulk metallic glasses using the friction welding method A-3626-2010. J. Alloy. Compd, 434 (2007) 102-105.

DOI: 10.1016/j.jallcom.2006.08.129

Google Scholar

[17] C. H. Wong, C.H.S., Friction welding of Zr41Ti14Cu12. 5Ni10Be22. 5 bulk metallic glass, Scripta Mate, 49 (2003) 393-397.

DOI: 10.1016/s1359-6462(03)00306-3

Google Scholar

[18] Y. Kawamura, T. Shoji and Y. Ohno, Welding technologies of bulk metallic glasses. J. Non-Cryst. Solids, 317 (2003) 152-157.

DOI: 10.1016/s0022-3093(02)02005-7

Google Scholar

[19] S Kagao, Y. Kawamura, Y. Ohno, Electron-beam welding of Zr-based bulk metallic glasses. Mat. Sci. Eng. A. 375-377 (2004) 312-316.

DOI: 10.1016/j.msea.2003.10.085

Google Scholar

[20] Z. X Qin, C. Li, H. F. Zhang et al., Friction Stir Welding of Zr55Al10Ni5Cu30Bulk Metallic Glass to Crystalline Aluminum. J. Mater. Sci. Technol. 25 (2009) 853-856.

Google Scholar

[21] T. Shoji, Y. Kawamura, Y. Ohno, Friction welding of bulk metallic glasses to different ones. Mat. Sci. Eng. A. 375-377 (2004) 394-398.

DOI: 10.1016/j.msea.2003.10.183

Google Scholar

[22] D. Wang, B.L. X, Z. Y. Ma et al., Friction stir welding of Zr55Cu30Al10Ni5 bulk metallic glass to Al–Zn–Mg–Cu alloy. Scripta Mater. 60 (2009) 112–115.

DOI: 10.1016/j.scriptamat.2008.09.014

Google Scholar

[23] A. Chiba, Y. Kawamura, M. Nishida, Explosive Welding of ZrTiCuNiBe Bulk Metallic Glass to Crystalline Metallic Plates, Mater. Sci. Forum. 556 (2008) 119-124.

DOI: 10.4028/www.scientific.net/msf.566.119

Google Scholar

[24] J. Kim, Y. Kawamura, Electron beam welding of the dissimilar Zr-based bulk metallic glass and Ti metal. Scripta Mater. 56 (2007) 709-712.

DOI: 10.1016/j.scriptamat.2006.12.046

Google Scholar

[25] Y. Kawamura, Y. Ohno, Superplastic bonding of bulk metallic glasses using friction. Scripta Mater. 45 (2001) 279-285.

DOI: 10.1016/s1359-6462(01)01025-9

Google Scholar