[1]
Komnitsas, K. and D. Zaharaki, Geopolymerisation: A Review and Prospects for the Minerals Industry. Minerals Engineering, 2007. 20: pp.1261-1277.
DOI: 10.1016/j.mineng.2007.07.011
Google Scholar
[2]
Rowles, M. and B. O'Connor, Chemical Optimisation of the Compressive Strength of Aluminosilicate Geopolymers Synthesized by Sodium Silicate Activation of Metakaolinite. Journal of Material Chemistry, 2003. 13: pp.1161-1165.
DOI: 10.1039/b212629j
Google Scholar
[3]
C.Y. Heah, et al., Potential Application of Kaolin without Calcine as Greener Concrete: A Review. Australian Journal of Basic and Applied Sciences, 2011. 5(7): pp.1026-1035.
Google Scholar
[4]
Zhang, Y. -s., W. Sun, and L. Zongjin, Composition Design and Microstructural Characterization of Calcined Kaolin-Based Geopolymer Cement. Applied Clay Science, 2010. 47: pp.271-275.
DOI: 10.1016/j.clay.2009.11.002
Google Scholar
[5]
Mustafa al-Bakri, A.M., et al., The relationship of NaOH molarity, Na2SiO3/NaOH ratio, fly ash/alkaline activator ratio, and curing temperature to the strength of fly ash-based geopolymer. Advanced in Materials Research, 2011. 328-330: pp.1475-1482.
DOI: 10.4028/www.scientific.net/amr.328-330.1475
Google Scholar
[6]
Mustafa al-Bakri, A.M., et al., Correlation between Na2SiO3/NaOH ratio and fly ash/alkaline activator ratio to the strength of geopolymer. Advanced Materials Research, 2012. 341-342: pp.189-193.
DOI: 10.4028/www.scientific.net/amr.341-342.189
Google Scholar
[7]
Yunsheng, Z., et al., Synthesis and Heavy Metal Immobilization Behaviours of Slag Based Geopolymer. Journal of Hazardous Materials, 2007. 143: pp.206-213.
DOI: 10.1016/j.jhazmat.2006.09.033
Google Scholar
[8]
Chang, J.J., A Study on the Setting Characteristics of Sodium Silicate-activated Slag Pastes. Cement and Concrete Research, 2003. 33: pp.1005-1011.
DOI: 10.1016/s0008-8846(02)01096-7
Google Scholar
[9]
Heller-Kallai, L. and I. Lapides, Reactions of kaolinites and metakaolinites with NaOH-comparison of different samples (Part 1). Applied Clay Science, 2007. 35: pp.99-107.
DOI: 10.1016/j.clay.2006.06.006
Google Scholar
[10]
Zuhua, Z., et al., Role of Water in the Synthesis of Calcined Kaolin-based Geopolymer. Applied Clay Science, 2009. 43: pp.218-223.
DOI: 10.1016/j.clay.2008.09.003
Google Scholar
[11]
Liew, Y.M., et al., Processing and characterization of calcined kaolin cement powder. Construction and Building Materials, In Press.
Google Scholar
[12]
ASTM C109/C109-05. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50mm] Cube Specimens). Annual book of ASTM Standards. (2008).
DOI: 10.1520/c0109_c0109m-21
Google Scholar
[13]
Yunsheng, Z., S. Wei, and L. Zongjin, Composition design and microstructural characterization of calcined kaolin-based geopolymer cement. Applied Clay Science, 2010. 47(3-4): pp.271-275.
DOI: 10.1016/j.clay.2009.11.002
Google Scholar
[14]
Sathonsaowaphak, A., P. Chindaprasirt, and K. Pimaraksa, Workability and Strength of Lignite Bottom Ash Geopolymer Mortar. Journal of Hazardous Materials, 2009. 168: pp.44-50.
DOI: 10.1016/j.jhazmat.2009.01.120
Google Scholar