Progressive Collapse Research: Current State and Future Needs

Article Preview

Abstract:

Research on progressive collapse has advanced greatly in the past forty years. Motivated by heightened research interest around the globe stemming from recent high profile events, the rate of progress has been especially rapid in the past decade. Research in this area has been primarily enabled by massive improvements in computational simulation tools and hardware as well as structural testing at a scale and level of sophistication never seen before. While the research effort shows no signs of slowing down, several agencies have already undertaken large codification efforts in an attempt to synthesize the rapidly growing knowledge base into practical and meaningful guidelines for collapse-resistant design. This keynote paper presents the state-of-the-art in progressive collapse research. The paper sheds light on several topics including: methods for assessment of structural robustness; methodologies for enhancement of system collapse resistance; probabilistic models for progressive collapse risk assessment; and current trends and research needs, which discusses current gaps in our understanding of progressive collapse research and identifies research efforts needed to address them.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 639-640)

Pages:

3-12

Citation:

Online since:

January 2013

Export:

Price:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

[1] ASCE Standard 7-10, Minimum Design Loads for Buildings and Other Structures (2010), American Society of Civil Engineers, Reston, VA.

Google Scholar

[2] U.S. General Service Administration (GSA) (2003). Progressive collapse analysis and design guidelines for new federal office building and major modernization project", Washington, D. C.

Google Scholar

[3] UFC (2009), UFC 4-023-03: Design of Buildings to Resist Progressive Collapse, Department of Defense, Washington, DC.

Google Scholar

[4] Hamburger, R. and Whittaker, A. (2004). Design of Steel Structures for Blast-related Progressive Collapse Resistance, Modern Steel Construction, 44(3), 45-51.

Google Scholar

[5] Ellingwood, B. R. and Dusenberry, D. O. (2005). Building Design for Abnormal Loads and Progressive Collapse, Computer-Aided Civil and Infrastructure Engineering, 20(3), 194-205.

DOI: 10.1111/j.1467-8667.2005.00387.x

Google Scholar

[6] Wada, A., Ohi, K., Suzuki, H. m Kohno, M. and Sakumoto, Y. (2006). A study on collapse control design method for high-rise steel buildings, Structural Engineering International, 16(2), 137-141.

DOI: 10.2749/101686606777962620

Google Scholar

[7] Byfield, M. P. (2006). Behavior and Design of Commercial Multistory Buildings Subjected to Blast, Journal of Performance of Constructed Facilities, 20(4), 324-329.

DOI: 10.1061/(asce)0887-3828(2006)20:4(324)

Google Scholar

[8] Nair, R. S. (2006). Preventing Disproportionate Collapse, Journal of Performance of Constructed Facilities, 20(4), 309-314.

DOI: 10.1061/(asce)0887-3828(2006)20:4(309)

Google Scholar

[9] Beer, M. and Liebscher, M. (2008). Designing Robust Structures – A Nonlinear Simulation Based Approach, Computers and Structures, 86(10), 1102-1122.

DOI: 10.1016/j.compstruc.2007.05.037

Google Scholar

[10] Kim, J. and Park, J. (2008). Design of Steel Moment Frames Considering Progressive Collapse, Steel and Composite Structures, 8(1), 85-98.

DOI: 10.12989/scs.2008.8.1.085

Google Scholar

[11] Starossek, U. and Haberland, M. (2010), Disproportionate Collapse: Terminology and Procedures, Journal of Performance of Constructed Facilities, 24(6), 519-528.

DOI: 10.1061/(asce)cf.1943-5509.0000138

Google Scholar

[12] Alashker, Y. and El-Taiwl, S. (2011). A Design-oriented Model for the Collapse Resistance of Composite Floors Subjected to Column Loss, Journal of Constructed Steel Research, 67(1), 84-92.

DOI: 10.1016/j.jcsr.2010.07.008

Google Scholar

[13] Liu, M. (2011). Progressive Collapse Design of Seismic Steel Frames Using Structural Optimization, Journal of Constructional Steel Research, 67(3), 322-332.

DOI: 10.1016/j.jcsr.2010.10.009

Google Scholar

[14] Kaewkulchai, G. and Williamson, E. B. (2004). Beam Element Formulation and Solution Procedure for Dynamic Progressive Collapse Analysis, Computer & Structures, 82(7-8), 639-651.

DOI: 10.1016/j.compstruc.2003.12.001

Google Scholar

[15] Kaewkulchai, G. and Williamson, E. B. (2006). Modeling the Impact of Failed Members for Progressive Collapse Analysis of Frame Structures, Journal of Performance of Constructed Facilities, 20(4), 375-383.

DOI: 10.1061/(asce)0887-3828(2006)20:4(375)

Google Scholar

[16] Abruzzon, J., Matta, A. and Panariello, G. (2006). Study of Mitigation Strategies for Progressive Collapse of a Reinforced Concrete Commercial Building, Journal of Performance of Constructed Facilities, 20(4), 348-390.

DOI: 10.1061/(asce)0887-3828(2006)20:4(384)

Google Scholar

[17] Sasani, M., and Kropelnicki, J. (2008). Progressive collapse analysis of an RC structure, Structural Design of Tall and Special Buildings, 17(4), 757-771.

DOI: 10.1002/tal.375

Google Scholar

[18] Izzuddin, B. A., Vlassis, A. G., Elghazouli, A. Y. and Nethercot, D. A. (2008). Progressive Collapse of Multi-Storey Buildings Due to Sudden Column Loss - Part I: Simplified Assessment Framework, Engineering Structures, 30(5), 1308-1318.

DOI: 10.1016/j.engstruct.2007.07.011

Google Scholar

[19] Vlassis, A. G., Izzuddin, B. A., Elghazouli, A. Y. and Nethercot, D. A. (2008). Progressive Collapse of Multi-Storey Buildings Due To Sudden Column Loss-Part II: Application, Engineering Structures, 30(5), 1424-1438.

DOI: 10.1016/j.engstruct.2007.08.011

Google Scholar

[20] Khandelwal, K., El-Tawil, S., Kunnath, S. K., and Lew, H. S. (2008). Macro-model based simulations of progressive collapse: steel frame structures, Journal of Structural Engineering, 134(7), 1070-1078.

DOI: 10.1061/(asce)0733-9445(2008)134:7(1070)

Google Scholar

[21] Tsai, M. H. and Lin, B. H. (2008). Investigation of Progressive Collapse Resistance and Inelastic Response for an Earthquake-Resistant RC Building Subjected to Column Failure, Engineering Structures, 30(12), 3619-3628.

DOI: 10.1016/j.engstruct.2008.05.031

Google Scholar

[22] Kim, H. S., Kim, J. and An, D. W. (2009). Development of Integrated System for Progressive Collapse Analysis of Building Structures Considering Dynamic Effects, Advances in Engineering Software, 40(1), 1-8.

DOI: 10.1016/j.advengsoft.2008.03.011

Google Scholar

[23] Kim, T. and Kim, J. (2009). Progressive Collapse-Resisting Capacity of Steel Moment Frames Considering Panel Zone Deformation, Advances in Structural Engineering, 12(2), 231-240.

DOI: 10.1260/136943309788251687

Google Scholar

[24] Kim, J. and An, D. (2009). Evaluation of Progressive Collapse Potential of Steel Moment Frames Considering Catenary Action, Structural Design of Tall and Special Buildings, 18(4), 455-465.

DOI: 10.1002/tal.448

Google Scholar

[25] Khandelwal, K., El-Tawil, S., and Sadek, F. (2009). Progressive collapse analysis of seismically designed steel braced frames, Journal of Constructional Steel Research, 65(3), 699-708.

DOI: 10.1016/j.jcsr.2008.02.007

Google Scholar

[26] Kim, T., Kim, J. and Park, J. (2009). Investigation of Progressive Collapse-Resisting Capability of Steel Moment Frames Using Push-Down Analysis, Journal of Performance of Constructed Facilities, 23(5), 327-335.

DOI: 10.1061/(asce)0887-3828(2009)23:5(327)

Google Scholar

[27] Alashker, Y., El-Tawil, S., and Sadek, F. (2010). Progressive Collapse Resistance of Steel-Concrete Composite Floors, Journal of Structural Engineering, 136(10), 1187-1196.

DOI: 10.1061/(asce)st.1943-541x.0000230

Google Scholar

[28] Kim, J., Park, J. H. and Lee, T. H. (2011). Sensitivity Analysis of Steel Buildings Subjected To Column Loss, Engineering Structures, 33(2), 421-432.

DOI: 10.1016/j.engstruct.2010.10.025

Google Scholar

[29] Khandelwal, K. and El-Tawil, S. (2011). Pushdown resistance as a measure of robustness in progressive collapse analysis, Engineering Structures, 33(9), 2653-2661.

DOI: 10.1016/j.engstruct.2011.05.013

Google Scholar

[30] Alashker, Y., Li, H. and El-Tawil, S. (2011). Approximations in Progressive Collapse Modeling, Journal of Structural Engineering, 137(9), 914-924.

DOI: 10.1061/(asce)st.1943-541x.0000452

Google Scholar

[31] Astaneh-Asl, A., Jones, B., Zhao, Y. and Hwa, R. (2001). Progressive Collapse Resistance of Steel Building Floors, Report Number UCB/CEE-Steel-2001/03, Dept. of Civil and Environmental Engineering., University of California, Berkeley.

Google Scholar

[32] Sasani, M., Bazan, M. and Sagiroglu, S. (2007). Experimental and Analytical Progressive Collapse Evaluation of Actual Reinforced Concrete Structure, ACI Structural Journal, 104(6), 731-739.

DOI: 10.14359/18955

Google Scholar

[33] Yi, W. J., He, Q. F., Yan, X. and Kunnath, S. K. (2008). Behavior of Reinforced Concrete Frame Structures, ACI Structural Journal, 105(4), 433-439.

Google Scholar

[34] Song, B. I. and Sezen, H. (2009). Evaluation of an existing steel frame building against progressive collapse, Proceedings of the 2009 Structure Congress, pp.1878-1885.

DOI: 10.1061/41031(341)208

Google Scholar

[35] Sasani, M. and Sagiroglu, S. (2010). Gravity Load Redistribution and Progressive Collapse Resistance of 20-Story Reinforced Concrete Structure following Loss of Interior Column, ACI Structural Journal, 107(6), 636-644.

DOI: 10.14359/51664011

Google Scholar

[36] Choi, H. and Kim. J. (2011). Progressive Collapse-Resisting Capacity of RC Beam–Column Sub-Assemblage, Magazine of Concrete Research, 63(4), 297-310.

DOI: 10.1680/macr.9.00170

Google Scholar

[37] Tan, K.H. and Yang, B. (2012).

Google Scholar

[38] Khandelwal, K., and El-Tawil, S. (2007). Collapse behavior of steel special moment resisting frame connections, Journal of Structural Engineering, 133(5), 646-655.

DOI: 10.1061/(asce)0733-9445(2007)133:5(646)

Google Scholar

[39] Bao, Y., Kunnath, S. K., El-Tawil, S. and Lew, H. S., (2008). Macromodel-Based Simulation of Progressive Collapse: RC Frame Structures, Journal of Structural Engineering, 134(7), 1079-1091.

DOI: 10.1061/(asce)0733-9445(2008)134:7(1079)

Google Scholar

[40] Kaewkulchai, G. and Williamson, E. B. (2003). Dynamic behavior of planar frames during progressive collapse, Proceedings of 16th engineering mechanics conference, (2003).

Google Scholar

[41] Ruth, P., Marchand, K. A., and Williamson, E. B. (2006).

Google Scholar

[42] Sasani, M., and Kropelnicki, J. (2008) Progressive collapse analysis of an RC structure, Structural Design of Tall and Special Buildings, 17(4), 757-771.

DOI: 10.1002/tal.375

Google Scholar

[43] Kwasniewski, L. (2010). Nonlinear dynamic simulations of progressive collapse for a multistory building, Engineering Structures, 32(5), 1223-1235.

DOI: 10.1016/j.engstruct.2009.12.048

Google Scholar

[44] Szyniszewski, S. (2009) Probabilistic approach to progressive collapse prevention. Physics based simulations, Proceedings of the ASCE Structures Congress, (2009).

DOI: 10.1061/41031(341)310

Google Scholar

[45] Mohamed, O. A. (2009). Assessment of progressive collapse potential in corner floor panels of reinforced concrete buildings, Engineering Structures, 31(3), 749-757.

DOI: 10.1016/j.engstruct.2008.11.020

Google Scholar

[46] Fu, F. (2009). Progressive Collapse Analysis of High-rise Building with 3-D Finite Element Modeling Method, Journal of Constructional Steel Research, 65(5), 1269-1278.

DOI: 10.1016/j.jcsr.2009.02.001

Google Scholar

[47] Fu, F. (2010). 3-D Nonlinear dynamic progressive collapse analysis of multi-storey steel composite frame buildings- parametric study, Engineering Structures, 32(12), 3974-3980.

DOI: 10.1016/j.engstruct.2010.09.008

Google Scholar

[48] Main, J. A. (2009). Development of 3D models of steel moment-frame buildings for assessment of robustness and progressive collapse vulnerability, The Structures Congress, (2009).

DOI: 10.1061/41031(341)186

Google Scholar

[49] Masoero, E., Wittel, F. K., Herrmann, H. J., and Chiaia, B. M. (2010). Progressive Collapse Mechanisms of Brittle and Ductile Framed Structures, Journal of Engineering Mechanics, 136(8), 987-995.

DOI: 10.1061/(asce)em.1943-7889.0000143

Google Scholar

[50] Crawford, J. E. (2002). Retrofit Methods to Mitigate Progressive Collapse, Report on the National Workshop and Recommendations for Future Effort.

Google Scholar

[51] Faschan, W. J., Garlock, R. B., and Sesil, D. A. Considerations For Retrofit of Existing Steel Buildings For Resisting Blast And Progressive Collapse, AISC/SINY Blast Design Symposium 2003, New York, NY.

Google Scholar

[52] Tan, S. and Astaneh-Asl, A. (2003). Cable-Based Retrofit of Steel Building Floors to Prevent Progressive Collapse. Report to the National Science Foundation, Department of Civil & Environmental Engineering, University of California, Berkley, CA.

Google Scholar

[53] Choi, J. H. and Chang, D. K., (2009). Prevention of Progressive Collapse for Building Structures to Member Disappearance by Accidental Actions, Journal of Loss Prevention in the Process Industries, 22(6), 1016-1019.

DOI: 10.1016/j.jlp.2009.08.020

Google Scholar

[54] Liu, J. L., (2010). Prevention of Progressive Collapse through Strengthening Beam-to-Column Connection, Part 1: Theoretical Analysis, Journal of Constructional Steel Research, 66(2), 229-237.

DOI: 10.1016/j.jcsr.2009.09.006

Google Scholar

[55] Liu, J. L., (2010). Prevention of Progressive Collapse through Strengthening Beam-to-Column Connection, Part 2: Finite Element Analysis, Journal of Constructional Steel Research, 66(2), 238-247.

DOI: 10.1016/j.jcsr.2009.09.005

Google Scholar

[56] Galal, K. and El-Sawy, T. (2010) Effect of retrofit strategies on mitigating progressive collapse of steel frame structures, Journal of Constructional Steel Research, 66(4), 520-531.

DOI: 10.1016/j.jcsr.2009.12.003

Google Scholar

[57] Orton, S., Jirsa, J. O. and Bayrak, O. (2009). Reinforced Concrete Buildings Vulnerable to Collapse, ACI Structural Journal, 106(5), 608-616.

Google Scholar

[58] Kim, J. and Shin, W. S. (2011). Retrofit of RC Frames against Progressive Collapse Using Prestressing Tendons, The Structural Design of Tall and Special Buildings.

DOI: 10.1002/tal.691

Google Scholar

[59] Lee, H., Huynh, C. T. and Kim, J. (2011). Retrofit of Structures to Prevent Progressive Collapse, ISEC-6, Zurich, June 21-26, (2011).

DOI: 10.3850/978-981-08-7920-4_s2-s97-cd

Google Scholar

[60] Bennett, R. M. (1988). Formulations for Probability of Progressive Collapse, Structural Safety, 5(1), 66-77.

Google Scholar

[61] Ellingwood, B. R. (2006). Mitigating Risk from Abnormal Loads and Progressive Collapse, Journal of Performance of Constructed Facilities, 20(4), 315-323.

DOI: 10.1061/(asce)0887-3828(2006)20:4(315)

Google Scholar

[62] Zareian, F. and Krawinkler, H. (2007). Assessment of Probability of Collapse and Design for Collapse Safety, Earthquake Engineering and Structural , 36(13), 1901-(1914).

DOI: 10.1002/eqe.702

Google Scholar

[63] Park, J. and Kim, J. (2010). Fragility Analysis of Steel Moment Frames with Various Seismic Connections Subjected To Sudden Loss of a Column, Engineering Structures, 32(6), 1547-1555.

DOI: 10.1016/j.engstruct.2010.02.003

Google Scholar

[64] Xu, G. and Ellingwood, B. R. (2011). Probabilistic Robustness Assessment of Pre-Northridge Steel Moment Resisting Frames, Journal of Structural Engineering, 137(9), 925-934.

DOI: 10.1061/(asce)st.1943-541x.0000403

Google Scholar

[65] Asprone, D., Jalayer, F., Prota, A. and Manfredi, G. (2010). Proposal of A Probabilistic Model for Multi-Hazard Risk Assessment of Structures in Seismic Zones Subjected To Blast for the Limit State of Collapse, Structural Safety, 32(1), 25-34.

DOI: 10.1016/j.strusafe.2009.04.002

Google Scholar

[66] Asprone, D., Jalayer, F., Prota, A. and Manfredi, G. (2011). Performance of Different Seismic Retrofitting Techniques in Case of Blast Induced Progressive Collapse, Applied Mechanics and Materials, v 82, pp.485-490.

DOI: 10.4028/www.scientific.net/amm.82.485

Google Scholar

[67] Sadek, F., Main, J. A., Lew, H. S., Robert, S. D., Chiarito, V. P., and El-Tawil, S. (2010).

Google Scholar

[68] Lew, H. S., Bao, Y., Sadek, F., Main, J. A, Pujol, S., and Sozen, M. A. (2011).

Google Scholar

[69] Karns, J. E., Houghton, D. L., Kim, J. H., and Hong, J. K. (2008). GSA Steel Frame Bomb Blast & Progressive Collapse Test Program Report., General Services Administration, Washington, DC.

Google Scholar

[70] FEMA. 2000. FEMA 273: NEHRP Guidelines for the Seismic Rehabilitation of Buildings., Federal Emergency Management Agency.

Google Scholar

[71] Li, H. and El-Tawil, S. (2012). Three-Dimensional Effects and Collapse Resistance Mechanism in Steel Frame Buildings., Unpublished manuscript.

Google Scholar