[1]
K. S Kim, M.H. Won, J.W. Kim, B.J. Back, Heat pipe cooling technology for desktop PC CPU. Applied Thermal Engineering 23(9) (2003) 1137-1144.
DOI: 10.1016/s1359-4311(03)00044-9
Google Scholar
[2]
M.E. Kabay, A Brief History of Computer Crime: An Introduction Of Student, School of Graduate Studies Norwich University, (2008).
Google Scholar
[3]
Ommi, Masaru, T. Fukumoto, State-of-the-art technologies of micro heat-pipe heat-sinks for notebook PCs thermal products Dept., (2000) Electronic Components Division and Components and Mounting Technology Development.
Google Scholar
[4]
H.B. Ma, C. Wilson, B. Borgmeyer, K. Park, Q. Yu, S.U.S. Choi, M. Tirumala, Effect of nanofluid on the heat transport capability in an oscillating heat pipe. Applied Physics Letters 88 (2006)143-116.
DOI: 10.1063/1.2192971
Google Scholar
[5]
Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME fed 231 (995) 99-105.
Google Scholar
[6]
Jacopo Buongiorno, et al. A benchmark study on the thermal conductivity of nanofluids. Applied Physics 106 094312 (2009).
Google Scholar
[7]
S.K. Das, N. Putra, P. Thiesen, and W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids. Transactions of ASME, Journal of Heat Transfer 125 (2003) 567-574.
DOI: 10.1115/1.1571080
Google Scholar
[8]
S.P. Jang, Effect of various parameters on nanofluid thermal conductivity. Journal of Heat Transfer 129 (2007) 617-623.
Google Scholar
[9]
Zhen Hua Liu, QunZhi Zhu. Application of aqueous nanofluids in a horizontal mesh heat pipe. Journal of Energy Conversion and Management, 52 (2011) 292-300.
DOI: 10.1016/j.enconman.2010.07.001
Google Scholar
[10]
Kyu Hyung Do, Hyo Jun Ha and Seok Pil Jang. Thermal Resistance of Screen Mesh Wick Heat Pipes Using the Water-based Al2O3nanofluids. International Journal of Heat and Mass Transfer, 53 (2010) 5888-5894.
DOI: 10.1016/j.ijheatmasstransfer.2010.07.050
Google Scholar
[11]
Jian Qu, Hui-yin Wu, Ping Cheng. Thermal performance of an oscillating heat pipe with Al2O3-water nanofluids. International Communications in Heat and Mass Transfer 37 (2010) 111-115.
DOI: 10.1016/j.icheatmasstransfer.2009.10.001
Google Scholar
[12]
Z. Liu, and Q. Zhu, Application of Aqueous Nanofluids on Heat Pipe Thermal Efficiency, International Communication in Heat and Mass Transfer, 35. (2008) 1316-1319.
DOI: 10.1016/j.icheatmasstransfer.2008.07.010
Google Scholar
[13]
N. Putra, W.N. Septiadi, H. Rahman, R. Irwansyah, Thermal performance of screen mesh wick heat pipes with nanofluids experimental, Thermal and Fluid Science 40 (2012) pp.10-17.
DOI: 10.1016/j.expthermflusci.2012.01.007
Google Scholar
[14]
D. Wen, Y. Ding, Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids), Journal of Thermophysics and Heat Transfer 18 (4) (2004) 481–485.
DOI: 10.2514/1.9934
Google Scholar
[15]
H.A. Mintsa, G. Roy, C.T. Nguyen, D. Doucet, New temperature dependent thermal conductivity data for water-based nanofluids, International Journal of Thermal Sciences 48 (2) (2009) 363–371.
DOI: 10.1016/j.ijthermalsci.2008.03.009
Google Scholar
[16]
J. -H. Lee, K.S. Hwang, S.P. Jang, B.H. Lee, J.H. Kim, S.U.S. Choi. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int. J. Heat Mass Transfer 53 (2010) 376-383.
DOI: 10.1016/j.ijheatmasstransfer.2007.10.026
Google Scholar
[17]
X. F Yang, Z. Liu, J. Zhao. Heat transfer performance of a horizontal micro grooved heat pipe using CuO nanofluid. J. Micromech. Microeng 18 (2008) 035038.
DOI: 10.1088/0960-1317/18/3/035038
Google Scholar
[18]
H. D Kim, J. Kim, M. H Kim. Experimental studies on CHF characteristics of nano-fluids at pool boiling. Int. J. Multiph. Flow 33 (2007) 691-706.
DOI: 10.1016/j.ijmultiphaseflow.2007.02.007
Google Scholar
[19]
Kyu Hyung Do, Seok Pil Jang, Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick, International Journal of Heat and Mass Transfer, Volume 53, Issues 9–10, (2010), 2183-2192.
DOI: 10.1016/j.ijheatmasstransfer.2009.12.020
Google Scholar