Ferulic Acid-Loaded Shellac Microparticles Prepared Using Electrohydrodynamic Atomization

Article Preview

Abstract:

An Electrohydrodynamic atomization (EHDA) process was exploited to prepare ferulic acid (FA)-loaded shellac microparticles. SEM observations showed that all the particles were round and solid with their sizes gradually increased from 0.68 ± 0.21 to 2.75 ± 0.64 μm as the concentrations of shellac and FA in ethanol raised from 20% to 50% (w/v). Wide-angle X-ray diffraction analyses demonstrated that FA had been totally converted into an amorphous state in the shellac matrix microparticles. Attenuated total reflectance Fourier transform infrared analysis disclosed that the hydrogen bonding presented between FA and shellac molecules. In vitro dissolution tests verified that all the microparticles were able to provide a fine sustained drug release profile. The release time periods had a close relationship with the diameters of microparticles. All the microparticles released the loaded FA via a typical Fickian diffusion mechanism. The present study provides an easy way to develop novel drug delivery microparticles for providing sustained drug release profiles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

326-330

Citation:

Online since:

March 2013

Export:

Price:

[1] A. H. Kibbe, Handbook of Pharmaceutical Excipients (Ed. A. H. Kibbe), 3rd ed., Pharmaceutical Press, London 99 (2000).

Google Scholar

[2] S. Berg, M. Bretz, E. M. Hubbermann, and K. Schwarz, J. Food Eng. 108, 158 (2012).

Google Scholar

[3] S. Henning, S. Leick, M. Kott, H. Rehage, and D. Suter, J. Microencapsul 29, 147 (2012).

Google Scholar

[4] V. R. Sinha and R. Kumria, Acta Pharm. 53, 41 (2003).

Google Scholar

[5] Y. Farag and C. S. Leopold, Eur. J. Pharm. Sci. 42, 400 (2011).

Google Scholar

[6] A. Kumari, S. K. Yadav, and S. C. Yadav, Colloids Surf. B 75, 1 (2010).

Google Scholar

[7] O. C. Farokhzad and R. Langer, ACS Nano 3, 16 (2009).

Google Scholar

[8] V. J. Mohanraj and Y. Chen, Tropical J. Pharm. Res. 5, 561 (2006).

Google Scholar

[9] X. Lu, W. Zhang, C. Wang, T. C. Wen, and Y. Wei, Prog. Polym. Sci. 36, 671(2011).

Google Scholar

[10] B. Lu, Y. Wang, Y. Liu, J. Zhou, Z. Zhang, Y. Wang, and W. Wang. Small 6, 1612 (2010).

Google Scholar

[11] D. G. Yu, C. Branford-White, S. W. A. Bligh, K. White, N. P. Chatterton, and L. M. Zhu, Macromol. Rapid Commun. 32, 744 (2011).

DOI: 10.1002/marc.201100049

Google Scholar

[12] D. G. Yu, L. M. Zhu, C. Branford-White, S. W. A. Bligh, and K. White, Chem. Commun. 47, 1216 (2011).

Google Scholar

[13] D. G. Yu, C. Branford-White, N. P. Chatterton, K. White, L. M. Zhu, X. X. Shen and W. Nie, Macromolecules 43, 10743 (2010).

DOI: 10.1021/ma1024363

Google Scholar

[14] D. G. Yu, J. H. Yang, X. Wang, and F Tian, Nanotechnology 23, 105606 (2012).

Google Scholar

[15] D. G. Yu, G. R. Williams, J. H. Yang, X. Wang, J. M. Yang, and X. Y. Li, J. Mater. Chem. 21, 15957 (2011).

Google Scholar

[16] D. G. Yu, G. R. Williams, L. D. Gao, S. W. A. Bligh, J. H. Yang, and X. Wang, Colloid Surface A 396, 161 (2012).

Google Scholar

[17] Y. S. Lee, Arch Pharm. Res. 28, 1183 (2005).

Google Scholar

[18] Y. T. Sohn, J. H. Oh, Arch Pharm. Res. 26, 1002 (2003).

Google Scholar

[19] D. G. Yu, J. M. Yang, L. Li, P. Lu, L. M. Zhu. Fiber. Polym. 2012, 13, 443 (2012).

Google Scholar

[20] J. H. Yang, G. Z. Yang, D. G. Yu, X. Wang, B. Zhao, and L. Zhang. Carbon, 53, 231 (2013).

Google Scholar

[21] W. Li, D. G. Yu, K. Chen, G. Wang, and G. R. Williams. Mater. Lett. 93, 125(2013).

Google Scholar