Flexural and Impact Properties of Biopolymer Derived from Sugar Palm Tree

Article Preview

Abstract:

The effect of glycerol concentration (15 w/w%, 20 w/w%, 30 w/w% and 40 w/w%) to the flexural and impact properties of plasticized sugar palm starch (SPS) was investigated in this present paper. Prior to the testing, the sugar palm starch extracted from the interior part of sugar palm stem was mixed with common glycerol (was used as a plasticizer) to form a novel biopolymer. The flexural and impact test were carried out according to ASTM D790 and ASTM 256 respectively. From this investigation, it is found that the 30% glycerol concentrated SPS biopolymer showed the highest flexural strength and flexural modulus with the value of 0.13 MPa and 87.54 MPa respectively. For the impact analysis, it is also found that same biopolymer showed the highest impact strength which is 6.13kJ/m2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

225-228

Citation:

Online since:

May 2013

Export:

Price:

[1] J. Sahari and S.M. Sapuan: Rev. Adv. Mat. Sci. Vol. 30 (2012), p.14

Google Scholar

[2] J. Sahari, S.M. Sapuan, Z.N. Ismarrubie, and M.Z.A. Rahman: Polym. Polym. Comp. Vol. 20 (2012), p.861

Google Scholar

[3] J. Sahari, S.M. Sapuan, Z.N. Ismarrubie, and M.Z.A. Rahman: Fib.Tex. East. Euro. Vol. 20 (2012), p.23

Google Scholar

[4] D. Bachtiar, S.M. Sapuan, and M.M. Hamdan: Mat. Des. Vol. 29 (2008), p.1285

Google Scholar

[5] D. Bachtiar, S.M. Sapuan, M.H.M. Ahmad, and H.Y. Sastra: J. Teknol Terpakai Vol. 4 (2006), p.1

Google Scholar

[6] M.R. Ishak, A.M.M. Edeerozey, I.S. Othman, Z. Leman and S.M. Sapuan: Mat. Sci. Eng. Vol. 11 (2010), p.12006

Google Scholar

[7] X. Y. Xu, K. M. Kim, M. A. Hanna and D. Nag: Ind. Crops Prod. Vol. 21 (2005), p.185

Google Scholar

[8] M. L. Fishman, D. R. Coffin, R. P. Konstance and C. I. Onwulata: Carbohyd. Polym. Vol. 41 (2000), p.317

Google Scholar

[9] P. M. Forssell, J. M. Mikkia, G. K. Moates and R. Parker: Carbohyd. Polym. Vol. 34 (1997), p.275

Google Scholar

[10] M.R. Ishak, Z. Leman, S.M. Sapuan, M.Y. Salleh and S.Misri: Int. J. Mec. Mat. Eng. Vol. 4 (2009), p.316

Google Scholar

[11] M.R. Ishak, S.M. Sapuan, Z. Leman, M.Z.A. Rahman, U.M.K. Anwa: J. Ther An. Cal. Vol. 109 (2012), pp.981-989

Google Scholar

[12] M.R. Ishak, Z. Leman, S.M. Sapuan, M.Z.A. Rahman and U.M.K. Anwar: Key Eng. Mat. Vol. 471 (2011), p.1147

Google Scholar

[13] M.R. Ishak, Z. Leman, S.M. Sapuan, M.Z.A. Rahman and U.M.K. Anwar: Key Eng. Mat. Vol. 471 (2011), p.1153

Google Scholar

[14] J. Sahari, S.M. Sapuan, Z.N. Ismarrubie, and M.Z.A. Rahman,:Key Eng. Mat. Vol. 471 (2011), p.455

Google Scholar

[15] J. Sahari, S.M. Sapuan, Z.N. Ismarrubie, and M.Z.A. Rahman: Key Eng. Mat.Vol. 471 (2011), p.502

Google Scholar

[16] F. Vilaseca, J.A. Mendez, A. Pelach, M. Llop, N. Canigueral, J. Girones, X. Turon and P. Mutje: Pro Biochem.Vol. 42 (2007), p.329

Google Scholar

[17] A.S. Hermann, J.Nickel and U.Riedel: Polym. Degrad. Stab. Vol. 59 (1998), p.251

Google Scholar

[18] C.Bastioli: Macromol. Symp. Vol. 130 (1998), p.379

Google Scholar

[19] J. Sahari, and S.M. Sapuan: Journ. Polym. Mat. Vol. 29 (2012), p.153

Google Scholar

[20] J. Sahari, S.M. Sapuan, E.S. Zainudin and M.A. Maleque: Polym. Renew. Resour. Vol. 3 (2012), p.33

Google Scholar

[21] N. Laohakunjit and A. Noomhorm: Starch Vol. 56 (2004), p.348

Google Scholar

[22] J. Sahari, S.M. Sapuan, E.S. Zainudin, M.A. Maleque: Carbohyd Polym, Vol. 92 (2013), p.1711

Google Scholar