The Design and Finite Element Analysis of the Installation to Smash Banana Stem

Article Preview

Abstract:

Aiming at the huge waste, low utilization of banana stem fiber and the environment pollution caused by it, the author redesign one of the main components of the crumple machine--the crushing device, build the device's 3D solid modeling with the Solidworks software, based on the finite element modelSolidworks Simulation, make the finite element analysis and discuss of the crushing blade under the proper operating condition .The design is safe and reliable according to the analysis, and would be great help to promote the comprehensive utilization of bananas stem fiber in the main producing areas and raise the economic benefits of banana cultivation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 791-793)

Pages:

694-698

Citation:

Online since:

September 2013

Export:

Price:

[1] P. Lava Kumar, R. Hanna, O.J. Alabi, et al. Banana bunchy top virus in sub-Saharan Africa: Investigations on virus distribution and diversity. Virus Research, 2011, 38(4):171-182.

DOI: 10.1016/j.virusres.2011.04.021

Google Scholar

[2] L. Oliveira, D. Evtuguin, N. Cordeiro, etal. Structural characterization of stalk lignin from banana plant. Industrial Crops and Products, 2009, 29(1): 86-95.

DOI: 10.1016/j.indcrop.2008.04.012

Google Scholar

[3] N. Reddy, Y. Yang. Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol., 2005, 23 (1): 22-27.

DOI: 10.1016/j.tibtech.2004.11.002

Google Scholar

[4] Liu Yuelian, Lu Qingfang. Identification and cultivation of a wild mushroom from banana pseudo-stem. Sheath Scientia Horticulturae, 2011, 129: 922-925.

DOI: 10.1016/j.scienta.2011.06.002

Google Scholar

[5] Yingqiang Wang, Min Zhang, Arun S. Mujumdar. Influence of green banana flour substitution for cassava starch on the nutrition, color, texture and sensory quality in two types of snacks. LWT-Food Science and Technology, 2012, 47(1) : 175-182.

DOI: 10.1016/j.lwt.2011.12.011

Google Scholar

[6] Hoysall N. Chanakya, Malayil Sreesha. Anaerobic retting of banana and arecanut wastes in a plug flow digester for recovery of fiber, biogas and compost. Energy for Sustainable Development, 2011, 16(2): 231-235.

DOI: 10.1016/j.esd.2012.01.003

Google Scholar

[7] Laly A. Pothan, Sabu Thomas, G. Groeninckx. The role of fibre/matrix interactions on the dynamic mechanical properties of chemically modified banana fibre/polyester composites. Composites Part A: Applied Science and Manufacturing, 2006, 37(9): 1260-1269.

DOI: 10.1016/j.compositesa.2005.09.001

Google Scholar

[8] Claudia Merlini, Valdir Soldi, Guilherme M.O. Barra. Influence of fiber surface treatment and length on physico-chemical properties of short random banana fiber-reinforced castor oil polyurethane composites. Polymer Testing, 2011, 30(8): 833-840.

DOI: 10.1016/j.polymertesting.2011.08.008

Google Scholar

[9] N. Cordeiro, C. Mendonça, L.A. Pothan, A. Varma. Monitoring surface properties evolution of thermochemically modified cellulose nanofibres from banana pseudo-stem. Carbohydrate Polymers,  2012, 88(1): 125-131.

DOI: 10.1016/j.carbpol.2011.11.077

Google Scholar

[10] A.N. Benítez, M.D. Monzón, I. Angulo, et al. Treatment of banana fiber for use in the reinforcement of polymeric matrices  Measurement, 2013, 46(3): 1065-1073.

DOI: 10.1016/j.measurement.2012.11.021

Google Scholar