XRD Investigations on Film Thickness and Substrate Temperature Effects of DC Magnetron Sputtered ZnO Films

Article Preview

Abstract:

In this paper, direct current plasma magnetron sputter deposition technique was employed to deposit zinc oxide (ZnO) films on glass substrates. The magnetron sputtering process parameters including film thickness and substrate temperature were investigated. The crystallite sizes of the ZnO films were extracted from the measured X-ray diffraction patterns. The correlation of the crystallite size of the ZnO films with the film thickness and the substrate temperature will be discussed in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

241-245

Citation:

Online since:

December 2013

Export:

Price:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

* - Corresponding Author

[1] W. Gao, and Z.W. Li, ZnO thin films produced by magnetron sputtering, Ceramics International, 30 (2004) 1155–1159.

DOI: 10.1016/j.ceramint.2003.12.197

Google Scholar

[2] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, and H. Morkoç, A comprehensive review of ZnO materials and devices, Journal of Applied Physics 98, 041301 (2005) 1-103.

DOI: 10.1063/1.1992666

Google Scholar

[3] Z.A. Wang, J.B. Chu, H.B. Zhu, Z. Sun, Y.W. Chen, and S.M. Huang, Growth of ZnO: Al films by RF sputtering at room temperature for solar cell applications, Solid-State Electronics, 53 (2009) 1149–1153.

DOI: 10.1016/j.sse.2009.07.006

Google Scholar

[4] K. Liu, M. Sakurai, and M. Aono, ZnO-Based Ultraviolet Photodetectors, Sensors, 10 (2010) 8604-8634, doi: 10. 3390/s100908604.

DOI: 10.3390/s100908604

Google Scholar

[5] M. Gabás, P.D. Carrasco, F.A. Rueda, P. Herrero, A.R.L. Cánovas, and J.R.R. Barrado, High quality ZnO and Ga: ZnO thin films grown onto crystalline Si (100) by RF magnetron sputtering, Solar Energy Materials and Solar Cells, 95 (8) (2011).

DOI: 10.1016/j.solmat.2011.04.001

Google Scholar

[6] S.M. Jung, Y.H. Kim, S.I. Kim, and S.I. Yoo, Characteristics of transparent conducting Al-doped ZnO films prepared by DC magnetron sputtering, Current Applied Physics, 11 (2011) S191-S196.

DOI: 10.1016/j.cap.2010.11.101

Google Scholar

[7] S. Tripathi, R.J. Choudhary, A. Tripathi, V. Baranwa1, A.C. Pandey, J.W. Gerlach, C. Dar, and D. Kanjilal, Studies of effect of deposition parameters on the ZnO films prepared by PLD, Nuclear Instruments and Methods in Physics Research B, 266 (2008).

DOI: 10.1016/j.nimb.2008.01.064

Google Scholar

[8] M. Purica, E. Budianu, E. Rusu, M. Danila, and R. Gavrila, Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition, Thin Solid Films, 403–404 (2002) 485–488.

DOI: 10.1016/s0040-6090(01)01544-9

Google Scholar

[9] S.A. Kamaruddin, K.Y. Chan, M.Z. Sahdan, M. Rusop, and H. Saim, ZnO microstructures and nanostructures prepared by sol–gel hydrothermal technique, Journal of Nanoscience and Nanotechnology, 10 (2010) 1-5.

DOI: 10.1166/jnn.2010.2444

Google Scholar

[10] R. Ayouchi, D. Leinen, F. Martın, M. Gabas, E. Dalchiele, and J.R.R. Barrado, Preparation and characterization of transparent ZnO thin films obtained by spray pyrolysis, Thin Solid Films, 426 (2003) 68–77.

DOI: 10.1016/s0040-6090(02)01331-7

Google Scholar

[11] S. Bensmaine, L.L. Brizoual, O. Elmazria, B. Assouar, and B. Benyoucef, The effects of the deposition parameters of ZnO thins films on their structural properties, Journal of Electron Devices, 5 (2007) 104-109.

Google Scholar

[12] A.N. Banerjee, C.K. Ghosh, K.K. Chattopadhyay, H. Minoura, A.K. Sarkar, A. Akiba, A. Kamiya and T. Endo, Low-temperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique, Thin Solid Films, 496 (2006) 112 – 116.

DOI: 10.1016/j.tsf.2005.08.258

Google Scholar

[13] N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, Control of preferred orientation for ZnOx films: control of self-texture, Journal of Crystal Growth, 130 (1-2) (1993) 269-279.

DOI: 10.1016/0022-0248(93)90861-p

Google Scholar

[14] G. Sanon, R. Rup and A. Mansingh, Growth and characterization of tin oxide films prepared by chemical vapor deposition, Thin Solid Films, 190 (1990) 287–301.

DOI: 10.1016/0040-6090(89)90918-8

Google Scholar

[15] S.S. Lin, and J.L. Huang, Effect of thickness on the structural and optical properties of ZnO films by r. f. magnetron sputtering, Surface & Coatings Technology, 185 (2004) 222– 227.

DOI: 10.1016/j.surfcoat.2003.11.014

Google Scholar

[16] J.A. Thornton, The microstructure of sputter-deposited coatings, Journal of Vacuum Science & Technology A, 4 (1986) 3059–3065.

Google Scholar

[17] Y.E. Lee, J.B. Lee, Y.J. Kim, H.K. Yang, J.C. Park, and H.J. Kim, Microstructural evolution and preferred orientation change of radio-frequency-magnetron sputtered ZnO thin films, Journal of Vacuum Science & Technology A, 14 (1996) (1943).

DOI: 10.1116/1.580365

Google Scholar

[18] X.Q. Wei, J.Z. Huang, M.Y. Zhang, Y. Du, and B.Y. Man, Effects of substrate parameters on structure and optical properties of ZnO thin films fabricated by pulsed laser deposition, Materials Science and Engineering B, 166 (2010) 141-146.

DOI: 10.1016/j.mseb.2009.10.029

Google Scholar

[19] X.H. Li, A.P. Huang, M.K. Zhu, Sh.L. Xu, J. Chen, H. Wang, B. Wang, and H. Yan, Influence of substrate temperature on the orientation and optical properties of sputtered ZnO films, Materials Letters, 57 (2003) 4655– 4659.

DOI: 10.1016/s0167-577x(03)00379-3

Google Scholar

[20] F. Chaabouni, M. Abaab, and B. Rezig, Effect of the substrate temperature on the properties of ZnO films grown by RF magnetron sputtering, Materials Science and Engineering B, 109 (2004) 236–240.

DOI: 10.1016/j.mseb.2003.10.105

Google Scholar

[21] R. Kumar, N. Khare, V. Kumar, and G.L. Bhalla, Effect of intrinsic stress on the optical properties of nanostructured ZnO thin films grown by rf magnetron sputtering, Applied Surface Science, 254 (2008) 6509–6513.

DOI: 10.1016/j.apsusc.2008.04.012

Google Scholar

[22] F. Spaepen, Interfaces and stresses in thin films, Acta Materialia, 48 (2000) 31-42, doi: 10. 1016/s1359-6454(99)00286-4.

DOI: 10.1016/s1359-6454(99)00286-4

Google Scholar

[23] C.V. Thompson and R. Carel, Stress and grain growth in thin films, Journal of the Mechanics and Physics of Solids, 44 (1996). 657-673, doi: 10. 1016/0022-5096(96)00022-1.

DOI: 10.1016/0022-5096(96)00022-1

Google Scholar

[24] V. Kumar, R.G. Singh, L.P. Purohit and R.M. Mehra, Temperature Induced Stress Dependent Photoluminescence Properties of Nanocrystallite Zinc Oxide, Journal of Nano- and Electronic Physics, 3 (2011) 388-395.

Google Scholar

[25] T. Ungár, G. Tichy, J. Gubicza and R.J. Hellmig, Correlation between subgrains and coherently-scattering-domains, Journal Powder Diffraction, 20 (2005) 366.

DOI: 10.1154/1.2135313

Google Scholar

[26] J. Gubicza, S. Nauyoks, L. Balogh, T. W. Zerda and T. Ungár, Influence of sintering temperature and pressure on crystallite size and lattice defect structure in nanocrystalline SiC, Journal of Materials Research, 22 (2007) 1314-1321.

DOI: 10.1557/jmr.2007.0162

Google Scholar