Positron Annihilation Spectroscopy of Defects in Commercially Pure Titanium Saturated with Hydrogen

Article Preview

Abstract:

The experimental study of the structure of commercially pure titanium after saturation with hydrogen from the gas phase by means of positron lifetime spectroscopy (PLS) and Doppler broadening spectroscopy (DBS) was carried out. In the result of penetration and accumulation of hydrogen, significant changes of annihilation characteristics occurred due to the defect structure changing. The investigated samples contained hydrogen in concentrations varying from 0 to 0.961 wt.%. Several stages of hydrogen interaction with the metal structure were revealed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-140

Citation:

Online since:

January 2014

Export:

Price:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yu.P. Cherdancev, I.P. Chernov, Yu.I. Tyurin, Uchebnoe posobie, Tomsk, TPU, (2008).

Google Scholar

[2] С.А. Wert, Hydrogen in metals, Topics in applied physics. 29 (1978) 305–330.

Google Scholar

[3] P.V. Geld, R.A. Ryabov, E.S. Kodes, Uchebnoe posobie, Moscow. Metallurgiya, (1979).

Google Scholar

[4] Y. Fukai, N. Okuma, Formation of Superabundant Vacancies in Pd Hydride under High Hydrogen Pressures, Phys. Rev. Lett. 73 (1994) 1640–1643.

DOI: 10.1103/physrevlett.73.1640

Google Scholar

[5] Y. Shirai, H. Araki, T. Mori, W. Nakamura, K. Sakaki, Positron annihilation study of lattice defects induced by hydrogen absorption in some hydrogen storage materials,J. Alloys Compd. 330 (2002) 125–131.

DOI: 10.1016/s0925-8388(01)01635-8

Google Scholar

[6] J. Cizek, I. Prochazka, S. Danis, M. Cieslar, G. Brauer, W. Anwand, R. Kirchheim, A. Pundt, Hydrogen-induced defects in niobium, Journal of Alloys and Compounds. 446-447 (2007) 479-483.

DOI: 10.1016/j.jallcom.2006.11.105

Google Scholar

[7] J. Cizek, I. Prochazka, F. Becvar, R. Kuzel, M. Cieslar, G. Brauer, W. Anwand, R. Kirchheim, A. Pundt, Hydrogen-induced defects in bulk niobium, Physical Review. B 69 224106 (2004).

DOI: 10.1103/physrevb.69.224106

Google Scholar

[8] R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors: Defect Studies, third ed., Berlin Heidelberg, New York, (2003).

Google Scholar

[9] V.I. Grafutin, E.P. Prokop'ev, Positron annihilation spectroscopy in materials structure studies, Physics-Uspekhi. 172, 1 (2002) 67–83.

Google Scholar

[10] A. Dupasquier, A.P. Mills, Proceedings International School of Physics Enrico Fermi, Course CXXV. (1995).

Google Scholar

[11] G.J.C. Carpenter, H.T. Easterday, B.T.A. McKee, A study of defect states in neutron-irradiated zirconium using positron annihilation spectroscopy, Journal of Nuclear Materials. 116 (1983) 277-286.

DOI: 10.1016/0022-3115(83)90113-7

Google Scholar

[12] V.N. Kudiiarov, L.V. Gulidova, N.S. Pushilina, A.M. Lider, Application of automated complex Gas Reaction Controller for hydrogen storage materials investigation, Advanced Materials Research. 740 (2013) 690-693.

DOI: 10.4028/www.scientific.net/amr.740.690

Google Scholar

[13] L.V. Gulidova, V.N. Kudiiarov, N.A. Dubrova, A.M. Lider, Primenenie avtomatizirovannogo komplexa Gas Reaction Controller dlya issledovaniya materialov-nakopiteley vodoroda, Alternativnaya energetika i ekologiya. 03/2 (2013) 32–35.

Google Scholar

[14] Y. Chen, X. Wan, F. Li et al., Hydrogen in metals, Materials Science and Engineering: A. 466 (2007) 156–159.

Google Scholar

[15] Yu.S. Bordulev, R.S. Laptev, G.V. Garanin, A.M. Lider, Optimizaciya parametrov spectrometra dlya issledovaniya vremeni zhizni positronov v materialah. Sovremennie naukoemkie tehnologii. 8-2 (2013) 184–189.

Google Scholar

[16] D. Giebel, J. Kansy, A New Version of LT Program for Positron Lifetime Spectra Analysis, Materials Science Forum. 666 (2010) 138-141.

DOI: 10.4028/www.scientific.net/msf.666.138

Google Scholar

[17] J. Cizek, M. Vlcek, I. Prochazka, Nuclear Instruments and Methods in Physics Research Section A. 623 (2010) 982-994.

Google Scholar

[18] Information on http: /www. ifj. edu. pl/~mdryzek/page_h1. html.

Google Scholar

[19] L. Yan, S. Ramamurthy, J. J. Noel, et al., Hydrogen absorption into alpha titanium in acidic solutions, Electrochimica Acta. 52 (2006) 1169-1181.

DOI: 10.1016/j.electacta.2006.07.017

Google Scholar

[20] V. Madina, I. Azkarate, Compatibility of materials with hydrogen. Particular case: hydrogen embrittlement of titanium alloys, International Journal of Hydrogen Energy. 34 (2009) 5976-5980.

DOI: 10.1016/j.ijhydene.2009.01.058

Google Scholar

[21] C. P. Liang, H. R. Gong, Fundamental influence of hydrogen on various properties of alpha-titanium, International Journal of Hydrogen Energy. 35 (2010) 3812-3816.

DOI: 10.1016/j.ijhydene.2010.01.080

Google Scholar

[22] J. Cizek, I. Prochazka, M. Cieslar, I. Stulikova, F. Chmelik, R.K. Islamgaliev, Positron-Lifetime Investigation of Thermal Stability of Ultra-Fine Grained Nickel, Phys. stat. sol. (a). 2 (2002) 391-408.

DOI: 10.1002/1521-396x(200206)191:2<391::aid-pssa391>3.0.co;2-h

Google Scholar

[23] J.M.C. Robles, E. Ogando, F. Plazaola, Positron lifetime calculation for the elements of the periodic table. J. Phys. -Condens. Matter. 19 (2007) 176222 (20pp).

DOI: 10.1088/0953-8984/19/17/176222

Google Scholar

[24] J.M.C. Robles, E. Ogando, F. Plazaola, Sensitiveness of the ratio between monovacancy and bulk positron lifetimes to the approximations used in the calculations: Periodic behaviour, Solid State Sciences. 14 (2012) 982–987.

DOI: 10.1016/j.solidstatesciences.2012.05.001

Google Scholar