Studies on Tensile Properties of Titanium Carbide (TiC) Particulates Composites

Article Preview

Abstract:

The aim of this study is to determine the tensile properties of titanium carbide (TiC) particulate reinforced with aluminium alloy 11.8% silicon (LM6) alloy composite. In this experimental study, TiC particulates reinforced with LM6 composite were manufactured by sand and permanent metallic mould methods. Tensile properties of these composite materials were investigated by different weight percentages, 0%, 5%, 10%, 15% and 20%wt. The tensile tests were conducted to determine tensile strength and modulus young to investigate the effects of reinforce materials on weight percentages. The outcome of the investigations reveals that the tensile strength is enhanced from 0wt% to 10wt% of TiC and start to decrease after the addition of 10wt% of TiC. Good bonding and wettability between the composites ranging from 0%wt. to 10%wt. of TiC influence the close distribution of TiC particles in the LM6 alloy matrix. The addition of 10%wt. to 20%wt. of TiC in LM6 alloy matrix cause the lower resistance and load-bearing capacity and the particle are no longer isolated with the LM6 alloy matrix causing the worse value of tensile strength.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-156

Citation:

Online since:

February 2014

Export:

Price:

[1] A. K. Gupta, T. K. Dan and P. K. Rohatgi, Aluminium alloy-silica sand composites: preparation and properties, J. Material Science. 21 (1986) 3413–3419.

DOI: 10.1007/bf02402980

Google Scholar

[2] J. U. Ejiofor and R. G. Reddy, Development in the processing and properties of particulate Al-Si Composites, J. JOM. 49 (1997) 31–37.

DOI: 10.1007/s11837-997-0008-5

Google Scholar

[3] S. Sulaiman, M. Sayuti and R. Samin, Mechanical properties of the as-cast quartz particulate reinforced LM6 alloy matrix composites, J. Material Processing Technology. 201 (2008) 731–735.

DOI: 10.1016/j.jmatprotec.2007.11.221

Google Scholar

[4] H. L Rizkalla and A. Abdulwahed, Some mechanical properties of metal-nonmetal Al-SiO2 particulate Composites, J. Material Processing Technology. 56 (1996) 398–403.

DOI: 10.1016/0924-0136(96)85107-7

Google Scholar

[5] W. D. J. Callister, Fundamentals of materials science and engineering, in: John Wiley &Sons Inc, USA, (2001).

Google Scholar

[6] Arsenault, R. J and Flom, Y, Phase boundary effects on deformation, 261-279 (1985).

Google Scholar

[7] Wei, G.C. and Becher, P. F, SiC-TiC multiphased materials, J. Materials Science and Engineering: A. 67(8) (1984) 571-574.

Google Scholar

[8] Nagaoka, T., Yasuoka, M., Hirao, K. and Kanzaki, S, Effects of Titanium Nitride Particle Size on Mechanical Properties of Si sub 3 N sub 4/Titanium Nitride Particulate Composites. J Ceramic Society of Japan. 100 (1992) 617-620.

DOI: 10.2109/jcersj.100.617

Google Scholar

[9] Chou, S.N., Lu, H. H, Lii D. F, and Huang, J. L, Investigation of residual stress effects in an alloy reinforced ceramic/ metal composite. Journal of Alloys and compounds. 409 (2008) 117-132.

DOI: 10.1016/j.jallcom.2008.02.053

Google Scholar

[10] Ramesh, D., Swamy, R.P. and Chandrashekar, Effect of weight percentage on mechanical properties of frit particulate reinforced Al6061 composite. J. Enginnering and Aplied Sciences, 5(1) (2010) 32-36.

Google Scholar

[11] Pio, L.Y., Sulaiman, S., Hamouda, A.M. and Ahmad, M.M.H. M, Grain refinement of LM6 Al-Si alloy sand castings to enhance mechanical properties. J. Materials Processing Technology, 162-163 (2005) 435-441.

DOI: 10.1016/j.jmatprotec.2005.02.217

Google Scholar

[12] Fatchurrohman, N, Solidification analysis of metal matrix composites aluminium 11. 8% silicon alloy reinforced with titanium carbide particulates. Master of Science, Universiti Putra Malaysia (2009).

DOI: 10.4028/www.scientific.net/msf.889.148

Google Scholar

[13] ASTM, ASTM B557M-94, Standard Test Methods of Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products, American Society for Testing and Materials, 02. 02 (2000).

DOI: 10.1520/b0557-94

Google Scholar

[14] D. D. Himbeault, R. A. Varin and K. Piekarski, Tensile properties of titanium carbide coated carbon fibre-aluminium alloy composite, in: Butterworth & co Publisher LTD, 20 (1989).

DOI: 10.1016/0010-4361(89)90217-6

Google Scholar

[15] W. S. Lee and W. S. Sue, Dynamic Impact and Fracture Behaviour of Carbon Fiber Reinforced 7075 Aluminum Metal Matrix Composite, J. Composite Materials. 34 (2000) 1821-184.

DOI: 10.1106/lkrc-m94c-4njn-cllb

Google Scholar

[16] El-Amoush, A. S, Effect of aluminium content on mechanical properties of hydrogenated Mg-Al magnesium alloys. J. Alloys and Compounds. 463 (2008) 475-479.

DOI: 10.1016/j.jallcom.2007.09.060

Google Scholar

[17] B. C. Pai, R. M. Pillai and K. G. Satyanarayana, Stir cast aluminum alloy matrix Composites Key Engineering Materials, 79-80 (1993) 117-128.

DOI: 10.4028/www.scientific.net/kem.79-80.117

Google Scholar