Growth of Cobalt Nanowires under External Magnetic Field

Article Preview

Abstract:

Metallic cobalt (Co) nanowires with a mean diameter of about 240 nm and lengths up to 30 μm are grown in solution by electroless deposition under external magnetic. Without magnetic field, only quasi-spherical Co nanoparticles are formed. In the presence of the magnetic field, strong attractive dipolar interactions are induced among the Co nanoparticles. This results in the preferential assembly of Co nanoparticles into nanowires with wire axes parallel to the magnetic field direction. Stronger magnetic field intensity produces longer and thinner Co nanowires. The Co nanowires exhibit ferromagnetic properties at room temperature with an enhanced coercivity of 800 Oe due to shape anisotropy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

136-140

Citation:

Online since:

March 2014

Export:

Price:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Kawamori, S. Yagi, and E. Matsubara: Formation J. Electrochem. Soc. Vol. 158 (2011) pp. E79-E83.

Google Scholar

[2] M.D.L. Balela, S. Yagi, and E. Matsubara: J. Electrochem. Soc. Vol. 158 (2011) pp. D210-D216.

Google Scholar

[3] M.D.L. Balela, S. Yagi, and E. Matsubara: Electrochem. Solid State Lett. Vol. 14 (2011) pp. D68-D71.

Google Scholar

[4] M. Li, K. Xie, Y. Wu, Q. Yang, and L. Liao: Mater. Lett., Vol. 111 (2013) pp.185-187.

Google Scholar

[5] A.A. Farghaly, Z.J. Huba, and E. Carpenter: J. Nanopart. Res. Vol. 14 (2012) pp.1159-1163.

Google Scholar

[6] F. Guo, H. Zheng, Z. Yang, and Y. Qian: Mater. Lett. Vol. 56 (2002) pp.906-909.

Google Scholar

[7] M. Aslam, R. Bhobe, N. Alem, S. Donthu, and V.P. Dravid: J. Appl. Phys. Vol. 98 (2005) p.074311.

Google Scholar

[8] S. Karim and K. Maaz: Mater. Chem. Phys. Vol. 130 (2011) pp.1103-1108.

Google Scholar

[9] I.Z. Rahman, K.M. Razeeb, M.A. Rahman, and Md. Kamruzzaman: J. Magn. Magn. Mater. Vol. 262 (2003) pp.166-169.

Google Scholar

[10] K. Valenzuela, S. Raghavan, P.A. Deymier, and J. Hoying: J. Nanosci. Nanotech., Vol. 8 (2008) pp.1-6.

Google Scholar

[11] H. Wang, Q. -W. Chen, L. -X. Sun, H. Qi, S. Zhou, and J. Xiong: Langmuir Vol. 25 (2009) pp.7135-7139.

Google Scholar

[12] M. Wu, G. Liu, M. Li, P. Dai, Y. Ma, and L. Zhang: J. Alloys and Compounds Vol. 491 (2010) pp.689-693.

Google Scholar

[13] M. J. Hu, B. Lin, and S. H. Yu: Nano. Res., Vol. 1 (2008) pp.303-313.

Google Scholar

[14] F. Liang, L. Guo, Q. P. Zhong, X. Wen, S. Yang, W. Zheng, C. Chen, N. Zhang, and W. Chu: Appl. Phys. Lett. Vol. 89 (2006) p.103105.

Google Scholar

[15] H. Niu, Q. Chen, H. Zhu, Y. Lin, and X. Zhang: J. Mater. Chem., Vol. 13 (2003) pp.1803-1805.

Google Scholar

[16] J. Wang, M. Yao, C. Xu, Y. Zhu, G. Xu, and P. Cui: Mater. Lett., Vol. 62 (2008) pp.3431-3433.

Google Scholar

[17] C. Gong, J. Tian, T. Zhao, Z. Wu, and Z. Zhang: Mater. Research Bull. Vol. 44 (2009) pp.35-40.

Google Scholar

[18] J. Park, Y. Jun, J. Choi, and J. Cheon: Chem. Comm. Vol. 2007 (2007) p.5001.

Google Scholar

[19] E.K. Athanassiou, P. Grossman, R.N. Grass, and W.J. Stark: Nanotech. Vol. 18 (2007) p.165606.

Google Scholar

[20] H. Zhang, and Y. Liu: J. Alloys Comp. Vol. 458 (2008) pp.588-594.

Google Scholar

[21] B. -Y. Xie, Y. Qian, S. Zhang, S. Fu, and W. Yu: Eur. J. Inorg. Chem. Vol. 2006, p.2454.

Google Scholar

[22] B.D. Cullity: Introduction to Magnetic Materials (Addison-Wesley, London, 1972).

Google Scholar

[23] X. Batlle and A. Labarta: J. Phys. D: Appl. Phys. Vol. 35 (2002) p. R15.

Google Scholar

[24] S.P. Gubin, Y.A. Koksharov, G.B. Khomutov, and G Yurkov: Russ. Chem. Rev. Vol. 74 (2005) p.489.

DOI: 10.1070/rc2005v074n06abeh000897

Google Scholar