[1]
Joshi, S. V., Drzal, L. T., Mohanty, A. K., & Arora, S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing (2004), Vol 35 (3), 371-376.
DOI: 10.1016/j.compositesa.2003.09.016
Google Scholar
[2]
Aji, I. S., Sapuan, S. M., Zainudin, E. S., & Abdan, K. Kenaf fibres as reinforcement for polymeric composites: a review. International Journal of Mechanical and Materials Engineering 2009, 4(3), 239-248.
Google Scholar
[3]
Wambua, P., Ivens, J., & Verpoest, I. Natural fibres: can they replace glass in fibre reinforced plastics? Composites Science and Technology 2003, 63(9), 1259-1264.
DOI: 10.1016/s0266-3538(03)00096-4
Google Scholar
[4]
S. Sreenivasan, S. Sulaiman, B. T. H. T. Baharudin, M. K. A. Ariffin and K. Abdan, (2013, September) Recent Developments of Kenaf Fiber Rein-forced Thermoset Composites: A Review Materials Research Innovations 2013, 17 (2), S2-1-S2-11.
DOI: 10.1179/1432891713z.000000000312
Google Scholar
[5]
Li, X., Panigrahi, S., & Tabil, L. G. Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. Journal of Polymer Environment 2007, 15(1), 25-33.
DOI: 10.1007/s10924-006-0042-3
Google Scholar
[6]
Agrawal , R., Saxena, N. S., Sharma, K. B., Thomas, S., & Sreekala, M. S. Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites. Materials Science and Engineering: A 2000, 77-82.
DOI: 10.1016/s0921-5093(99)00556-0
Google Scholar
[7]
Yanjun, X., Callum, H. A., Zefang, X., Holger, M., & Carsten, M Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing 2010, 41(7), 806-819.
DOI: 10.1016/j.compositesa.2010.03.005
Google Scholar
[8]
Sawpan, M. A., Pickering, K. L., & Fernyhough, A. (2011, September). Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites. Composites Part A: Applied Science and Manufacturing 2011, 42(9), 1189-1196.
DOI: 10.1016/j.compositesa.2011.05.003
Google Scholar
[9]
Cho , D., Lee, H. S., & Han, S. O. Effect of Fiber Surface Modification on the Interfacial and Mechanical Properties of Kenaf Fiber-Reinforced Thermoplastic and Thermosetting Polymer Composites. Composite Interfaces 2009, 16(7-9), 711-729.
DOI: 10.1163/092764409x12477427307537
Google Scholar
[10]
Sgriccia, N., Hawley, M. C., & Misra, M. Characterization of natural fiber surfaces and natural fiber composites. Composites Part A: Applied Science and Manufacturing 2008, 39(10), 1632-1637.
DOI: 10.1016/j.compositesa.2008.07.007
Google Scholar
[11]
Park, J. -M., Son, T. Q., Jung, J. -G., & Hwang, B. -S. Interfacial evaluation of single Ramie and Kenaf fiber/epoxy resin composites using micromechanical test and nondestructive acoustic emission. Composite Interfaces 2012, 13(2-3), 105-129.
DOI: 10.1163/156855406775997051
Google Scholar
[12]
Sockalingam, S., & Nilakantan, G. Fiber-Matrix Interface Characterization through the Microbond Test. International Journal of Aeronautical & Space Science 2012, 13(3), 282-295.
DOI: 10.5139/ijass.2012.13.3.282
Google Scholar
[13]
Zhandarov, S., & Mäder, E. Characterization of fiber/matrix interface strength: applicability of different tests, approaches and parameters. Composites Science and Technology 2005, 65(1), 149-160.
DOI: 10.1016/j.compscitech.2004.07.003
Google Scholar
[14]
Sreekala M.S. and Thomas S., Utilization Of Short Oil Palm Empty Fruit Bunch Fiber (OPEFB) As A Reinforcement In Phenol-Formaldehyde Resins: Studies On Mechanical Properties, Journal of Polymer Engineering 1996, 16(4), 265–294.
DOI: 10.1515/polyeng.1996.16.4.265
Google Scholar
[15]
Hsueh C.H., Young's modulus of unidirectional discontinuous-fiber composites, Composites Science and Technology 2000, 60, 2671–2680.
DOI: 10.1016/s0266-3538(00)00128-7
Google Scholar
[16]
Puglia, D. , Terenzi, A., Barbosa S. E. & Kenny J. M. Polypropylene-natural fibre composites. Analysis of fibre structure modification during compounding and its influence on the final properties, Composite Interfaces, 2008, 15(2-3), 111-129.
DOI: 10.1163/156855408783810849
Google Scholar
[17]
Khalil, H. A., Alwani, S. M., & Mohd Omar, A. K. Chemical Composition, Anatomy, Lignin Distribution, And Cell Wall Structure Of Malaysian Plant Waste Fibers. Bioresources 2006, 1(2), 220-232.
DOI: 10.15376/biores.1.2.220-232
Google Scholar
[18]
Mohanty, A. K., Misra, M., & Drzal, L. T. Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Composite Interfaces 2001, 8(5), 313-343.
DOI: 10.1163/156855401753255422
Google Scholar