A Parametric Investigation on the Neo-Hookean Material Constant

Article Preview

Abstract:

This paper assesses the Neo-Hookean material parameters pertaining to deformation behaviour of hyperelastic material by means of numerical analysis. A mathematical model relating stress and stretch is derived based on Neo-Hookeans strain energy function to evaluate the contribution of the material constant, C1, in the constitutive equation by varying its value. A systematic parametric study was constructed and for that purpose, a Matlab programme was developed for execution. The results show that the parameter (C1) is significant in describing material properties behaviour. The results and findings of the current study further enhances the understanding of Neo-Hookean model and hyperelastic materials behaviour. The ultimate future aim of this study is to come up with an alternative constitutive equation that may describe skin behaviour accurately. This study is novel as no similar parametric study on Neo-Hookean model has been reported before.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 915-916)

Pages:

853-857

Citation:

Online since:

April 2014

Export:

Price:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Mahmud, C. A. Holt, S. L. Evans, and N. F. A. Manan: Adv. Sci. Lett. (2013), p.3155.

Google Scholar

[2] N.F.A. Manan, M.H.M. Ramli, M.N.A.A. Patar, C. Holt, S. Evans, M. Chizari and J. Mahmud: Humanities, Science and Engineering Research (SHUSER), 2012 IEEE Symposium on, (2012), p.805.

DOI: 10.1109/shuser.2012.6268996

Google Scholar

[3] J. Mahmud, C. Holt, S. Evans, N.F.A. Manan and M. Chizari: Procedia Engineering Vol. 41(2012), p.1580.

Google Scholar

[4] L. Mahmud, M. Ismail, N. Manan and J. Mahmud: Business Engineering and Industrial Applications Colloquium (BEIAC), 2013 IEEE, 2013, p.801.

DOI: 10.1109/beiac.2013.6560246

Google Scholar

[5] N.F.A. Manan, J. Mahmud and M.H. Ismail.  Journal of Medical and Bioengineering Vol. 2 (2013), p.45.

Google Scholar

[6] C. Wiltsey, P. Kubinski, T. Christiani, K. Toomer, J. Sheehan, A. Branda, et al: J Mater Sci: Mater Med (2013), p.837.

DOI: 10.1007/s10856-013-4857-x

Google Scholar

[7] H. Yamada and N. Sakata : J Biorheol Vol. 1 (2012), p.1.

Google Scholar

[8] N. D. Stanescu and D. Popa: Applied Mechanics and Materials Vol. 430 (2013), p.53.

Google Scholar

[9] F. S. Sin, D. Schroeder, and J. Barbic: Computer Graphics Forum Vol. 32 (2012), p.36.

Google Scholar

[10] K. V. Raja and R. Malayalamurthi: Int J Mech Mater Des (2011), p.299.

Google Scholar

[11] T. Sohail and B. Nadler: Acta Mechanica (2011), p.225.

Google Scholar

[12] F. Tauheed and S. Sarangi: Int J Mech Mater Des (2012, ) p.393.

Google Scholar

[13] S. Pearce: Mathematics and Mechanics of Solids Vol. 18 (2012), p.860.

Google Scholar

[14] A. G. Mitsak, A. M. Dunn, and S. J. Hollister: Journal of the Mechanical Behaviour of Biomedical Materials II (2012), p.3.

Google Scholar

[15] M. Liu, Q.H. Zhang, L.Y. Gao, and X.M. Qin: Applied Mechanics and Materials Vol. 66-68 (2011), p.83.

Google Scholar

[16] B. Kim, S. B. Lee, J. Lee, S. Cho, H. Park, S. Yeom, et al: International Journal of Precision Engineering and Manufacturing Vol. 13 (2012), p.759.

Google Scholar

[17] P. H. Kao, S. R. Lammers, L. Tian, K. Hunter, K. R. Stenmark, R. Shandas, et al.: Journal of Biomechanical Engineering Vol. 13 3(5) (2011), p.051002.

Google Scholar

[18] C. R. Henak, A. L. Kapron, A. E. Anderson, B. J. Ellis, S. A. Maas, and J. A. Weiss: Biomech Model Mechanobiol (2013), p.1.

Google Scholar

[19] B. Fallqvist and M. Kroon: Biomech Model Mechanobiol (2013), p.373.

Google Scholar

[20] Z. Chen and S. Diebels: Arch Appl Mech (2012), p.1041.

Google Scholar

[21] K. Chen and J. D. Weiland: Journal of Biomechanical Engineering Vol. 133 (2011), p.064505.

Google Scholar

[22] F. Carpi and M. Gei: Smart Materials and Structures Vol. 22 (10) (2013), p.4011.

Google Scholar