Modified Polyol-Mediated Synthesis of Doped TiO2 Nanoparticles as the Photoanode in Dye Solar Cells (DSCs)

Article Preview

Abstract:

Synthesis of nanoscale TiO2 exhibiting specific properties of electron or ion conductivity is critical to improve the performance of dye solar cells (DSC). This paper presents the modified polyol-mediated synthesis of doped TiO2 nanoparticles. TiO2 samples were doped with cobalt (Co) and nickel (Ni) and the effects of calcination temperature (550 °C and 650 °C) on the crystallinity of pure samples were investigated. X-ray diffraction (XRD) analysis was used to determine the effect of dopant in lattice structure. The morphology and Crystal structure of TiO2 samples and their chemical analysis was conducted using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectrometer respectively. Results show agglomeration of spherical particles in all doped samples. Crystal structure in the doped samples reveals modified phases and major crystal phase identical to anatase. It is observed that the molar ratio of water to metal can control the nucleation and growth and prevents significant agglomeration of nanoparticles. More effective doping was recorded for samples with 0.5 % concentration. Effective hydroxyl group is detected in both 0.5% Ni and Co promising good photocatalytic material. SEM images of 0.2% Ni-doped sample shows smallest average particle size.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

575-579

Citation:

Online since:

April 2014

Export:

Price:

* - Corresponding Author

[1] M. Siemons, U. Simon, Gas sensing properties of volume-doped CoTiO3 synthesized via polyol method, Sensors and Actuators B: Chemical, 126 (2007) 595–603.

DOI: 10.1016/j.snb.2007.04.009

Google Scholar

[2] A. Zaleska, Doped-TiO2 : A Review, Recent Patents on Engineering, 2 (2008) 157-164.

Google Scholar

[3] B. Babic, J. Gulicovski, Z. Dohcˇevic´-Mitrovic, D. a. Bucˇevac, M. Prekajski, J. Zagorac, B. Matovic´, Synthesis and characterization of Fe3+ doped titanium dioxide nanopowders, Ceramics International, 38 (2012) 635-640.

DOI: 10.1016/j.ceramint.2011.07.053

Google Scholar

[4] X. Chen, S. S. Mao, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications, Chem. Rev., 107 (2007) 2891-2959.

DOI: 10.1021/cr0500535

Google Scholar

[5] K. Villa, A. Black, X. Dome`nech, J. Peral, Nitrogen doped TiO2 for hydrogen production under visible light irradiation, Solar Energy Materials & Solar Cells, 86 (2012 ) 558–566.

DOI: 10.1016/j.solener.2011.10.029

Google Scholar

[6] F. Fiévet, R. Brayner, The Polyol Process, in: R. Brayner, F. Fiévet, T. Coradin (Eds. ) Nanomaterials: A Danger or a Promise?, Springer, London, 2013, pp.1-25.

DOI: 10.1007/978-1-4471-4213-3_1

Google Scholar

[7] J. Choi, H. Park, M.R. Hoffmann, Effects of Single Metal-Ion Doping on the Visible-Light Photoreactivity of TiO2, J. Phys. Chem. C, 114 (2010) 783–792.

DOI: 10.1021/jp908088x

Google Scholar

[8] M. Barakat, G. Hayes, S. Shah, Effect of cobalt doping on the phase transformation of TiO2 nanoparticles, Nanosci. Nanotech. 2, 5 (2005) 759-765.

DOI: 10.1166/jnn.2005.087

Google Scholar

[9] B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd Ed ed., Prentice Hall, New Jersey, 2001, pp.167-171.

Google Scholar

[10] K. HP, A. LE, X-ray diffraction procedures for polycrystalline and amorphous materials, Journal of Applied Crystallography, 8 (1975) 573–574.

Google Scholar

[11] S. Li, P. Jena, Polyol-Mediated Synthesis of Ultrafine TiO2 Nanocrystals and Tailored Physiochemical Properties by Ni Doping, J. Phys. Chem. C, 113 (2009) 9210–9217.

DOI: 10.1021/jp902306h

Google Scholar

[12] C. Feldmann, H. -O. Jungk, Polyol-Mediated Preparation of Nanoscale Oxide Particles, J Mater Sci, 37 (2002) 3251-3254.

Google Scholar

[13] S. Albonetti, G. Baldi, A. Barzanti, A.L. Costa, J. Epoupa Mengou, F. Trifiro, A. Vaccari, Chlorinated organics total oxidation over V2O5/TiO2 catalysts prepared by polyol-mediated synthesis, Applied Catalysis A: General, 325 (2007) 309–315.

DOI: 10.1016/j.apcata.2007.02.031

Google Scholar