Modification of Stress and Texture Distributions in Asymmetrically Rolled Titanium

Article Preview

Abstract:

Asymmetric rolling can be used in order to modify material properties and to decrease forces and torques applied during deformation. This geometry of deformation is relatively easy to implement on existing industrial rolling mills and it can provide large volumes of a material. The study of microstructure, crystallographic texture and residual stress in asymmetrically rolled titanium (grade 2) is presented in this work. The above characteristics were examined using EBSD technique and X-ray diffraction. The rolling asymmetry was realized using two identical rolls, driven by independent motors, rotating with different angular velocities w1 and w2. It was found that asymmetric rolling leads to microstructure refinement, texture homogenization and lowering of residual stress.

You have full access to the following eBook

Info:

Periodical:

Pages:

688-693

Citation:

Online since:

August 2014

Export:

* - Corresponding Author

[1] H. Gao, G. Chen, Asymmetrical cold rolling realized on plain mill for steel sheet by laser-textured rolls, Iron and Steel, 33 (1998) 63–66.

Google Scholar

[2] S.H. Lee, G. N, Lee, Analysis of deformation textures of asymmetrically rolled steel sheets, International Journal of Mechanical Sciences, 43 (2001) 1997–(2015).

DOI: 10.1016/s0020-7403(01)00025-x

Google Scholar

[3] S. Chhann, D. Solas, A.L. Etter, R. Penelle, T. Baudin, Texture Evolution in Invar® Deformed by Asymmetrical Rolling, Materials Science Forum, 550 (2007) 551-556.

DOI: 10.4028/www.scientific.net/msf.550.551

Google Scholar

[4] S. Wronski, B. Ghilianu, T. Chauveau, B. Bacroix, Analysis of textures heterogeneity in cold and warm asymmetrically rolled aluminium, Materials Characterization, 62 (2011) 22-34.

DOI: 10.1016/j.matchar.2010.10.002

Google Scholar

[5] M. Wronski, K. Wierzbanowski, L. Pytlik, B. Bacroix, P. Lipinski, Study of Asymmetric Rolling of Titanium by Finite Elements Method with Implemented Crystalline Model, Mater. Sci. Forum, 777 (2014) 65-70.

DOI: 10.4028/www.scientific.net/msf.777.65

Google Scholar

[6] S. Wroński, K. Wierzbanowski, B. Bacroix, M. Wróbel, E. Rauch, F. Montheillet, M. Wroński, Texture heterogeneity of asymmetrically rolled low carbon steel, Archives of Metallurgy and Materials, 54 (2009) 89-102.

DOI: 10.4028/www.scientific.net/msf.638-642.2811

Google Scholar

[7] K. Wierzbanowski, J. Tarasiuk, B. Bacroix, A. Miroux and O. Castelnau, Deformation Characteristics Important for Nucleation Process. Case of Low-Carbon Steels, Archives of Metallurgy, 44 (1999) 183- 201.

Google Scholar

[8] A. Baczmański, A. Tidu, P. Lipinski, M. Humbert, and K. Wierzbanowski, New Type of Diffraction Elastic Constants for Stress Determination, Materials Science Forum, 524-525 (2006) 235-240.

Google Scholar

[9] A. Baczmanski, P. Lipinski, A. Tidu, K. Wierzbanowski and B. Pathiraj, Quantitative estimation of incompatibility stresses and elastic energy stored in ferritic steel, J. Appl. Cryst, 41 (2008) 854–867.

DOI: 10.1107/s0021889808023911

Google Scholar

[10] A. Baczmański, K. Wierzbanowski, J. Tarasiuk, M. Ceretti, A. Lodini, Anisotropy of Micro-Stress - Measured by Diffraction, Revue de Metallurgie, 94 (1997) 1467- 1474.

DOI: 10.1051/metal/199794121467

Google Scholar

[11] G.K. Williamson, W.H. Hall, X-ray line broadening from filed Al and W, Acta Metall., 1 (1953) 22-31.

Google Scholar