[1]
P.R. Bueno, Obtaining Transluscent Ceramics using SnO2 and TiO2 for application in electro-optical and photochemical devices, Master's Dissertation P. 1-17. Material Engineering -UFSCAR, São Carlos, (1999). – Originally written in portuguese.
Google Scholar
[2]
Technical Information. Titanium Dioxide P25 as Photocatalyst TI 1234-DEGUSSA- 1-1243-0 / March (2002).
Google Scholar
[3]
Y.M. Cui, and S.H. Fan, Synthesis, characterization and application of complex nanometer particles of Rh+3/TiO2/SnO2 in photocatalytic degradation of PAR, Ganguang Kexue Yu Guang Huaxue, Vol. 21, (2003), n. 3, pp.161-168.
Google Scholar
[4]
J. Yang, L. Lu, D. Li, X. Yang, and X Wang. Preparation, characterization and photocatalytic degradation properties of TiO2 / SnO2 nanocrystalline, Xiyou Jinshu Cailiao Yu Gongcheng, Vol. 30, (2001) pp.475-478.
Google Scholar
[5]
M.M. Kondo, J.F.F. Orlanda, M.G.A.B. Ferreira, and M.T. Grassi M.T., Proposição de um Reator Fotocatalítico para Destruição de Microrganismos em Ambientes Interiores, Quim. Nova, Vol. 26, (2203), n°1, pp.133-135.
DOI: 10.1590/s0100-40422003000100022
Google Scholar
[6]
W.A. Jacoby, P. Maness, E.J. Wolfrum, D.M. Blake, and J.A. Fennel Mineralization of Bacterial Cell Mass on a Photocatalytic Surface in Air, Environmental Science & Technology, Vol. 32, (1998) P. 17.
DOI: 10.1021/es980036f
Google Scholar
[7]
J. Choi, H. Park, and M. R. Hoffmann Effects of Single Metal-Ion Doping on the Visible-Light Photoreactivity of TiO2, J. Phys. Chem. C, Vol. 114, (2010), p.783–792.
DOI: 10.1021/jp908088x
Google Scholar
[8]
K.E. Karakitsou, X.E. Verykios, Effects of Altervalent Cation Doping of TiO2 on its Performance as a Photocatalyst for Water Cleavage J. Phys. Chem., Vol. 97, (1993), pp.1184-1189.
DOI: 10.1021/j100108a014
Google Scholar
[9]
A. Di Paola, E. G. López, G. Marcia, C. Martín, L. Palmisano, V. Rives, A.M. Venezia, Surface Characterisation of Metal Ions Loaded TiO2 Photocatalysts: Structure–Activity Relationship, Applied Catalysis B: Environmental, Vol. 48, (2004).
DOI: 10.1016/j.apcatb.2003.10.015
Google Scholar
[10]
J.C.S. Wu, C.H. Chen, J. Photochem. Photobiol., A Chem., Vol. 163, (2004) pp.509-515.
Google Scholar
[11]
I-Hsiang Tseng, Wan-Chen Chang, Jeffrey C.S. Wu Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts, Applied Catalysis B: Environmental Vol. 37, (2002), p.37–48.
DOI: 10.1016/s0926-3373(01)00322-8
Google Scholar
[12]
L. Shi, C. Li, H. Gu, and D. Fang Morphology and properties of ultrafinne SnO2-TiO2 coupled semiconductor particles, Materials Chemistry and Physics Vol. 62 (2000) pp.62-67.
DOI: 10.1016/s0254-0584(99)00171-6
Google Scholar
[13]
J. Yang, D. Li, X. Wang, X. Yang, and L. Lu Rapid Synthesis of Nanocrystalline TiO2/SnO2 Binary Oxides and Their Photoinduced Decomposition of Methyl Orange, Journal of Solid State Chemistry Vol. 165, (2002), pp.193-198.
DOI: 10.1006/jssc.2001.9526
Google Scholar
[14]
W. Lee, H-S. Shen, K. Dwight, and A. Wold Effect of Silver on the Photocatalytic of TiO2, Journal of Solid State Chemistry, Vol. 106, (1993) pp.288-294.
DOI: 10.1006/jssc.1993.1288
Google Scholar
[15]
Y. Cao, X. Zhang, W. Yang, H. Du, Y. Bai, T. Li, and J. Yao, J. A Bicomponent TiO2/SnO2 Particulate Film for Photocatalysis, Chem. Mater., Vol. 12, (2000), pp.3445-3448.
DOI: 10.1021/cm0004432
Google Scholar
[16]
I-H. Tseng, W. C. Chang, and J. C.S. Wu Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts, Applied Catalysis B: Environmental Vol. 37 (2002) p.37–48.
DOI: 10.1016/s0926-3373(01)00322-8
Google Scholar
[17]
J. Choi, H. Park, and Michael R. Hoffmann, Effects of Single Metal-Ion Doping on the Visible-Light Photoreactivity of TiO2, J. Phys. Chem. C, Vol. 114, (2010), p.783–792.
DOI: 10.1021/jp908088x
Google Scholar
[18]
V. D. Kumari, M. Subrahmanyam, M.V. P. Sharma, J. K. Reddy, and K. Lalitha, Photocatalysis Approach for Energy and Environmental Challenges at Indian Institute of Chemical Technology, Hyderabad, India, Mater. Res. Soc. Symp. Proc. Vol. 1171 (2009).
DOI: 10.1557/proc-1171-s01-04
Google Scholar
[19]
A. Sclafani, M. N. Mozzanegay, and J. M. Herrmanny Influence of Silver Deposits on the Photocatalytic Activity of Titania, Journal of Catalysis Vol. 168, (1997) p.117–120 ARTICLE NO. CA971631.
DOI: 10.1006/jcat.1997.1631
Google Scholar
[20]
A. Mills, R.H. Davies, and D. Worsley, Water purification by semiconductor phtocalylisis. Chem. Soc. Rev., (1993), pp.417-425.
Google Scholar
[21]
F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, and R.N. Tailored, Titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review. Applied Catalysis A: General 359, (2009), p.25–40.
DOI: 10.1016/j.apcata.2009.02.043
Google Scholar
[22]
Nogueira, R.F.P., Jardim, W.G., Química Nova, Vol. 21, (1998), n° 1, p.69.
Google Scholar
[23]
I-H. Tseng, W.C. Chang, J.C.S. Wu, Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts, Applied Catalysis B: Environmental Vol. 37, (2002), p.37–48.
DOI: 10.1016/s0926-3373(01)00322-8
Google Scholar
[24]
A. Mills, and S. Le Hunte, An overview of semiconductor photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry Vol. 108, (1997), pp.1-35.
DOI: 10.1016/s1010-6030(97)00118-4
Google Scholar