Self and Chemical Diffusion in Liquid Al-Ag

Article Preview

Abstract:

Self-and chemical diffusion coefficients are reported for molten Al-Ag on the Al-rich side of the phase diagram for Ag concentrations of up to 45at% and for pure liquid Ag. Temperature dependent Ag self-diffusion coefficients were obtained using quasi-elastic neutron scattering. Chemical diffusion coefficients were measured in situ by means of X-ray radiography of a long-capillary furnace. A detailed error analysis for the long-capillary experiments is reported. It is shown that perturbing effects can be detected and that accurate chemical diffusion coefficients can be measured with high precision. It is demonstrated based on Al-Ag20at% that the Darken equation appears to be valid for this system with a thermodynamic factor lower than unity. Furthermore, in Al-Ag it appears that Ag self-diffusion for small Ag concentrations is faster than Al-self-diffusion in liquid Al. This contrasts with observations made for other Al-based melts like Al-Ni and Al-Cu.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-166

Citation:

Online since:

April 2016

Export:

Price:

[1] V. T. Witusiewicz, U. Hecht, S. G. Fries and S. Rex, J. Alloys Comp. Vol. 385 (2004), p.133.

Google Scholar

[2] V. T. Witusiewicz, U. Hecht, S. G. Fries, S. Rex, J. Alloys Comp. Vol. 385 (2004), p.217.

Google Scholar

[3] A. Genau and L. Ratke, Int. J. Mat. Res. Vol. 103 (2012), p.469.

Google Scholar

[4] A. Dennstedt and L. Ratke, Trans. Ind. Inst. Metals Vol. 65 (2012), p.777.

Google Scholar

[5] A. Dennstedt, L. Ratke, A. Choudhury and B. Nestler, Metall. Microstruct. Anal. Vol. 2 (2013), p.140.

Google Scholar

[6] J. Hotzer, M. Jainta, P. Steinmetz, B. Nestler, A. Dennstedt, A. Genau, M. Bauer, H. Koestler and U. Rude, Acta Mater. Vol 93 (2015), p.194.

DOI: 10.1016/j.actamat.2015.03.051

Google Scholar

[7] Y. Du, Y. A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He and F. -Y. Xie, Mat. Sci. Eng. A Vol. 363 (2003), p.140.

Google Scholar

[8] Y. Du, L. J. Zhang, S. L. Cui, D. D. Zhao, D. D. Liu, W. B. Zhang, W. H. Sun and W. Q. Jie, Sci. China-Technol. Sci. Vol. 55 (2012), p.306.

Google Scholar

[9] B. Zhang, A. Griesche and A. Meyer, Phys. Rev. Lett. Vol. 104 (2010), 035902.

Google Scholar

[10] F. Kargl, M. Engelhardt, F. Yang, P. Schmakat, B. Schillinger, A. Griesche and A. Meyer, J. Phys.: Condens. Matter Vol. 23 (2011), 254201.

DOI: 10.1088/0953-8984/23/25/254201

Google Scholar

[11] F. Kargl, E. Sondermann, H. Weis, and A. Meyer, High Temp. -High Press. Vol. 42 (2013), p.3.

Google Scholar

[12] A. Griesche, B. Zhang, E. Solórzano, and F. Garcia-Moreno, Rev. Sci. Instrum. Methods Vol. 81 (2010), 056104.

Google Scholar

[13] A. Meyer, EPJ Web of Conf. Vol. 83 (2015), 01002.

Google Scholar

[14] G.G. Simeoni, R. G. Valicu, G. Borchert, P. Böni, N. G. Rasmussen, F. Yang, F. Kordel, D. Holland-Moritz, F. Kargl and A. Meyer, Appl. Phys. Lett. (accepted).

DOI: 10.1063/1.4938071

Google Scholar

[15] M. Engelhardt, Diffusion of mass in liquid AlCuAg and the binary subsystems, PhD thesis RWTH Aachen University (2014).

Google Scholar

[16] A. Bruson and M. Gerl, Phys. Rev. B Vol. 21 (1980), p.5447.

Google Scholar

[17] G. Mathiak, A. Griesche, K. H. Kraatz and G. Frohberg, J. Non-Cryst. Solids Vol. 205 (1996), p.412.

DOI: 10.1016/s0022-3093(96)00253-0

Google Scholar

[18] A. Griesche, M. -P. Macht and G. Frohberg, J. Non-Cryst. Solids Vol. 353 (2007), p.3305.

Google Scholar

[19] R. M. Banish and L. B. Jalbert, Adv. Space Res. Vol. 24 (1999), p.1311.

Google Scholar

[20] B. A. Beer, Annalen der Physik Vol. 86 (1952), p.78.

Google Scholar

[21] A. Griesche, F. Garcia-Moreno, M. Macht, and G. Frohberg, Mat. Sci. Forum Vol. 508 (2006), p.567.

DOI: 10.4028/www.scientific.net/msf.508.567

Google Scholar

[22] H. Weis, Struktur und Dynamik in flüssigem Germanium und Silizium-Germanium, PhD thesis, Ruhr Universität Bochum (2012).

Google Scholar

[23] F. Kargl, H. Weis, T. Unruh, and A. Meyer J. Phys.: Conf. Series Vol. 340 (2012), 012077.

Google Scholar

[24] S. K. Das, J. Horbach, M. M. Koza, S. Mavila Chatoth, and A. Meyer, Appl. Phys. Lett. Vol. 86 (2005), 011918.

DOI: 10.1063/1.1845590

Google Scholar

[25] J. Horbach, S. K. Das, A. Griesche, M. -P. Macht, G. Frohberg, and A. Meyer, Phys. Rev. B Vol. 75 (2007), 174304.

Google Scholar

[26] L. S. Darken, Trans. AIME Vol. 175 (1948), p.184.

Google Scholar

[27] E. Sondermann, F. Kargl, T. Unruh, and A. Meyer, submitted to Phys. Rev. Lett. (2015).

Google Scholar

[28] A. Meyer, Phys. Rev. B Vol. 81 (2010), 012102.

Google Scholar

[29] A. Meyer, S. Stüber, D. Holland-Moritz, O. Heinen, and T. Unruh, Phys. Rev. B Vol. 77 (2008), 092201.

Google Scholar

[30] F. Kargl et al. (in preparation).

Google Scholar