Synthesis, Structural and Mechanical Characterization of Amorphous and Crystalline Boron Nanobelts

Article Preview

Abstract:

Amorphous and crystalline (rhombohedral structure with [111] growth direction) boron nanobelts were synthesized by the vapor-liquid-solid technique. Their structure and chemical compositions were studied by various electron and atomic force microscopy techniques. Most amorphous and crystalline belts have a width to thickness ratio of 2 and are covered with a layer of amorphous silicon oxide. The crystalline belt cores are defect-free single crystals. Gold catalyst thickness and synthesis temperature are the two prominent parameters determining structure of the synthesized nanobelts. The elastic modulus and hardness were measured using nanoindentation and atomic force microscopy three-point bending techniques. The indentation elastic modulus and hardness were measured to be 92.84.5 GPa and 8.40.6 GPa for amorphous belts, and 72.73.9 GPa and 6.80.6 GPa for crystalline ones, respectively. The three-point bending elastic moduli were found to be 87.83.5 GPa and 72.22.4 GPa for amorphous and crystalline, respectively. The measured mechanical properties are 4-5 times lower than those of the counterpart bulk materials.

You have full access to the following eBook

Info:

Periodical:

Pages:

10-22

Citation:

Online since:

January 2008

Authors:

Export:

[1] V. I. Matkovich (Eds), Boron and Refractory Boride, Springer-Verlag, Berlin, (1977).

Google Scholar

[2] R.M. Adams, Ed., Boron, Metallo-Boron, Compounds and Boranes, Interscience Publishers, New York, (1964).

DOI: 10.1126/science.147.3660.857.b

Google Scholar

[3] N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, Reed Educational and Professional Publishing Ltd, UK, (1997).

Google Scholar

[4] J.E. Bailey, in Handbook of Polymer-Fibre Composites, F.R. Jones (Eds. ), Longman Scientific & Technical, Harlow, UK, (1994).

Google Scholar

[5] F.N. Tavadze, J.V. Lominadze, A.F. Khvedelidze, G.V. Tsagareishvili, M.K. Shorshorov, S.I. Bulichev, The effect of impurities on the mechanical properties of zone melted boron, J. LessCommon Met. 82 (1981) 95-97.

DOI: 10.1016/0022-5088(81)90203-4

Google Scholar

[6] L. Cao, Z. Zhang, G. Li, J. Zhang, W. Wang, Well-aligned boron nanowire arrays, Adv. Mater. 13 (2001) 1701-1704.

DOI: 10.1002/1521-4095(200111)13:22<1701::aid-adma1701>3.0.co;2-q

Google Scholar

[7] Y. Wu, B. Messer, P. Yang, Superconducting MgB2 nanowires, Adv. Mater. 13 (2001) 14871489.

Google Scholar

[8] J.Z. Wu, S.H. Yun, A. Dibos, D.K. Kim, M. Tidrow, Fabrication and characterization of boron-related nanowires, Microelectr. J. 34 (2003) 463-470.

DOI: 10.1016/s0026-2692(03)00074-0

Google Scholar

[9] Y.J. Zhang, H. Ago, M. Yumura, T. Komatsu, S. Ohshima, K. Uchida, S. Iijima, Synthesis of crystalline boron nanowires by laser ablation, Chem. Commun. 23 (2002) 2806-2807.

DOI: 10.1039/b207449d

Google Scholar

[10] Y.J. Zhang, H. Ago, M. Yumura, S. Ohshima, K. Uchida, T. Komatsu, S. Iijima, Study of the growth of boron nanowires synthesized by laser ablation, Chem. Phys. Lett. 385 (2004) 177183.

DOI: 10.1016/j.cplett.2003.12.052

Google Scholar

[11] X.M. Meng, J.Q. Hu, Y. Jiang, C.S. Lee, S. T. Lee, Boron nanowires synthesized by laser ablation at high temperature, Chem. Phys. Lett. 370 (2003) 825-828.

DOI: 10.1016/s0009-2614(03)00202-1

Google Scholar

[12] Q. Yang, J. Sha, J. Xu, Y.J. Ji, X.Y. Ma, J.J. Niu, H.Q. Hua, D. R. Yang, Aligned single crystal boron nanowires, Chem. Phys. Lett. 379 (2003) 87-90.

DOI: 10.1016/j.cplett.2003.08.019

Google Scholar

[13] T.T. Xu, J.G. Zheng, N.Q. Wu, A.W. Nicholls, J.R. Roth, D.A. Dikin, R.S. Ruoff, Crystalline boron nanoribbons: synthesis and characterization, Nano Lett. 4 (2004) 963-968.

DOI: 10.1021/nl0498785

Google Scholar

[14] S. Jin, H. Mavoori, C. Bower, R. B. van Dover, High critical currents in iron-clad superconducting MgB2 wires, Nature 411 (2001) 563-566.

DOI: 10.1038/35079030

Google Scholar

[15] P.C. Canfield, D.F. Finnermore, S.L. Bud'ko, J.E. Ostenson, G. Lapertot, C.E. Cunningham, C. Petrovic, Superconductivity in dense MgB2 wires, Phys. Rev. Lett. 86 (2001) 2423-2426.

DOI: 10.1103/physrevlett.86.2423

Google Scholar

[16] R.S. Ruoff, D. Qian, W.K. Liu, Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements Comptes rendus Physique 4 (2003) 993-1008.

DOI: 10.1016/j.crhy.2003.08.001

Google Scholar

[17] E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes, Science 277 (1997) 1971-(1975).

DOI: 10.1126/science.277.5334.1971

Google Scholar

[18] H. Ni, X. D. Li, Young's modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques, Nanotechnology 17 (2006) 3591-3597.

DOI: 10.1088/0957-4484/17/14/039

Google Scholar

[19] G. Feng, W.D. Nix, Y. Yoon, C. J. Lee, A study of the mechanical properties of nanowires using nanoindentation, J. Appl. Phys. (2006) 074304.

Google Scholar

[20] S. Mao, M. Zhao, Z.L. Wang, Nanoscale mechanical behavior of individual semiconducting nanobelts, Appl. Phys. Lett. 83 (2003) 993-995.

DOI: 10.1063/1.1597754

Google Scholar

[21] X.D. Bai, P.X. Gao, Z.L. Wang, E. D. Wang, Dual-mode mechanical resonance of individual ZnO nanobelts, Appl. Phys. Lett. 82 (2003) 4806-4808.

DOI: 10.1063/1.1587878

Google Scholar

[22] H. Ni, X.D. Li, G. S. Cheng, R. Klie, Mechanical properties of single-crystal GaN nanowires, J. Mate. Res. 21 (2006) 2882-2887.

DOI: 10.1557/jmr.2006.0350

Google Scholar

[23] E. Stern, G. Cheng, E. Cimpoiasu, R. Klie, S. Guthrie, J. Klemic, I. Kretzschmar, E. Steinlauf, D. Turner-Evans, E. Broomfield, J. Hyland, R. Koudelka, T. Boone, M. Young, A. Sanders, R. Munden, T. Lee, D. Routenberg, M. A. Reed, Electrical characterization of single GaN nanowires, Nanotechnology 16 (2005).

DOI: 10.1088/0957-4484/16/12/037

Google Scholar

[24] G. Fasol, Room-temperature blue gallium nitride laser diode, Science, 272 (1996) 1751-1752.

DOI: 10.1126/science.272.5269.1751

Google Scholar

[25] X.D. Li, B. Bhushan, Fatigue studies of nanoscale structures for MEMS/NEMS applications using nanoindentation techniques, Surf. Coat. Technol. 163-164 (2003) 521-526.

DOI: 10.1016/s0257-8972(02)00662-x

Google Scholar

[26] X.D. Li, B. Bhushan, K. Takashima, C.W. Baek, Y.K. Kim, Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques, Ultramicroscopy 97 (2003) 481-494.

DOI: 10.1016/s0304-3991(03)00077-9

Google Scholar

[27] X.D. Li, B. Bhushan, Nanofatigue studies of ultrathin hard carbon overcoats used in magnetic storage devices, J. Appl. Phys. 91 (2002) 8334-8336.

DOI: 10.1063/1.1452699

Google Scholar

[28] X.D. Li, B. Bhushan, Development of a nanoscale fatigue measurement technique and its application to ultrathin amorphous carbon coatings, Scripta Mater. 47 (2002) 473-479.

DOI: 10.1016/s1359-6462(02)00181-1

Google Scholar

[29] X.D. Li, B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications, Mater. Charact. 48 (2002) 11-36.

DOI: 10.1016/s1044-5803(02)00192-4

Google Scholar

[30] X.D. Li, B. Bhushan, Nanomechanical characterisation of solid surfaces and thin films, Int. Mater. Rev. 48 (2003)125-164.

DOI: 10.1179/095066003225010227

Google Scholar

[31] H. Ni, X.D. Li, Self-assembled composite nano-/micronecklaces with SiO2 beads in boron strings, Appl. Phys. Lett. 89 (2006) 053108.

DOI: 10.1063/1.2245443

Google Scholar

[32] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elasticmodulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583.

DOI: 10.1557/jmr.1992.1564

Google Scholar

[33] H. Ni, X.D. Li, H.S. Gao, Elastic modulus of amorphous SiO2 nanowires, Appl. Phys. Lett. 88 (2006) 043108.

DOI: 10.1063/1.2165275

Google Scholar

[34] X.D. Li, X.N. Wang, Q.H. Xiong, P.C. Eklund, Mechanical properties of ZnS nanobelts, Nano Lett. 5 (2005)1982-(1986).

DOI: 10.1021/nl0513885

Google Scholar