Modeling of Light Propagation and Phonon Conduction inside Metallic Nanoparticles Enhanced Thin-Film Solar Cells

Article Preview

Abstract:

The main aim of this work is to analyze the various heat transport mechanisms and their roles in efficiency enhancement of a thin-film solar cell due to embedded metallic nanoparticles at the rear of the cell, from both electrical and thermal aspects. The nanoparticles present deep inside the cell reflect incident radiation which then increases the optical path length for enhanced electricity generation. The increase in the optical path length also tends to induce additional but undesirable thermal heating which reduces the performance of the cells. The relationship between the improved conversion efficiency and the thermal effect is the crucial factor of maximizing the performance of thin-film solar cells and has yet to be explored. An accurate theoretical/numerical modeling is warranted in this case. Here, we present an analysis of combined light propagation and preliminary phonon transport in the cell to study solar-energy deposition and the associated thermal gradient.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

26-35

Citation:

Online since:

January 2016

Export:

Price:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.V. Shah, Thin-Film Silicon Solar Cells, CRC Press Inc, Hoboken, (2010).

Google Scholar

[2] N. Dahan, Z. Jehl, J.F. Guillemoles, D. Lincot, N. Naghavi, J. -J Greffet, Using radiative transfer equation to model absorption by thin Cu (In, Ga) Se 2 solar cells with Lambertian back reflector, Opt. Express. 21 (2013) 2563-2580.

DOI: 10.1364/oe.21.002563

Google Scholar

[3] J. Springer, A. Poruba, M. Vanecek, Improved three-dimensional optical model for thin-film silicon solar cells, J. Appl. Phys. 104 (2004) 5329-5337.

DOI: 10.1063/1.1784555

Google Scholar

[4] A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vanĕček, J. Kočka, J. Meier, P. Torres, A. Shah, Optical absorption and light scattering in microcrystalline silicon thin films and solar cells, J. Appl. Phys. 88 (2000) 148-160.

DOI: 10.1063/1.373635

Google Scholar

[5] V.N. -S. Bong, B.T. Wong, Solution of the Boltzmann Transport Equation for Phonon Transport via the Speed-Up Transient Monte Carlo Method Using Reference Temperature, Numer. Heat Tr. B-Fund. 66 (2014) 281-306.

DOI: 10.1080/10407790.2014.901005

Google Scholar

[6] B.T. Wong, M. Francoeur, M. Pinar Mengüç, A Monte Carlo simulation for phonon transport within silicon structures at nanoscales with heat generation, Int. J. Heat Mass Tran. 54 (2011) 1825-1838.

DOI: 10.1016/j.ijheatmasstransfer.2010.10.039

Google Scholar

[7] B. Zink, R. Pietri, F. Hellman, Thermal conductivity and specific heat of thin-film amorphous silicon, Phys. Rev. Letts. 96 (2006) 055902.

DOI: 10.1103/physrevlett.96.055902

Google Scholar

[8] N.V. Voshchinnikov, G. Videen, T. Henning, Effective medium theories for irregular fluffy structures: aggregation of small particles, Appl. Optics. 46 (2007) 4065.

DOI: 10.1364/ao.46.004065

Google Scholar

[9] R. Bikky, N. Badi, A. Bensaoula, Effective Medium Theory of Nanodielectrics for Embedded Energy Storage Capacitors, COMSOL Conf. 2010 Boston (2010).

Google Scholar

[10] M. Zeman, R.A.C.M.M. Van Swaaij, J.W. Metselaar, R.E.I. Schropp, Optical modeling of a-Si: H solar cells with rough interfaces: Effect of back contact and interface roughness, J. Appl. Phys. 88 (2000) 6436-6443.

DOI: 10.1063/1.1324690

Google Scholar

[11] J. Krč, F. Smole, M. Topič, Analysis of light scattering in amorphous Si: H solar cells by a one‐dimensional semi‐coherent optical model, Prog. Photovoltaics: Research and Applications, 11 (2003) 15-26.

DOI: 10.1002/pip.460

Google Scholar