Effect of Annealing Temperature on Phase Transition of Nanoalumina Synthesized by Auto-Combustion Route

Article Preview

Abstract:

Nanocrystalline Al2O3 powder has been successfully synthesized by a simple and fast sol-gel auto-combustion method. The transformation of crystalline phases of as-synthesized nano powders was investigated through X-ray diffraction in terms of their crystallinity and crystallite size. Subsequently, a detailed transmission electron microscopy (TEM) investigation, including specific area electron diffraction (SAED) analysis revealed the crystallographic alterations and morphological information even at lattice scale which co-include the XRD analysis. The results obtained allow to explain the evolution of an amorphous state into different crystalline phases with increased calcining temperature; and their relation to particle size. The particle size is found to be closely related to phase transition of Al2O3 from γ → δ → θ → κ →α. The existence of distinctive bonds and band energy were studied by employing Fourier-transform infrared spectroscopy (FTIR) and UV-visible spectroscopy, respectively. On the other hand, thermo gravimetric analysis (TGA) had also been performed to confirm the phase purity of nano powder.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

74-86

Citation:

Online since:

May 2016

Export:

Price:

* - Corresponding Author

[1] H.S. Nalwa, Encyclopedia for Nanoscience and Nanotechnology, American Scienctific Publishers, California, (2004).

Google Scholar

[2] Z.L. Wang, Characterization of Nanophase Materials, Wiley-VCH Verlag GmbH, Weinhwim, (2000).

Google Scholar

[3] Y. Wang, C. Bryan, H. Xu, P. Pohl, Y. Yang, C.J. Brinker, Interface chemistry of nanostructured materials: ion adsorption on mesoporous alumina, J. Colloid Interf. Sci. 254 (2002) 23-30.

DOI: 10.1006/jcis.2002.8571

Google Scholar

[4] K.C. Hass, W.F. Schneider, A. Curioni, W. Andreoni, The chemistry of water on alumina surfaces: reaction dynamics from first principles, Science 282 (1998) 265-268.

DOI: 10.1126/science.282.5387.265

Google Scholar

[5] J.M. McHale, A. Auroux, A.J. Perrotta, A. Navrotsky, Surface energies and thermodynamic phase stability in nanocrystalline aluminas, Science 277 (1997) 788-791.

DOI: 10.1126/science.277.5327.788

Google Scholar

[6] N. Ichinose, Superfine Particle Technology, Springer-Verlag, London, (1993).

Google Scholar

[7] R. Uyeda, Studies of ultrafine particles in Japan: crystallography. Method of preparation and technological applications, Prog. Mater. Sci. 35 (1991) 1-96.

Google Scholar

[8] A. Stierle, F. Renner, R. Streitel, H. Bosch, W. Brube, B.C. Cowie, X-ray diffraction study of the ultrathin Al2O3 layer on NiAl110, Science 303 (2004) 1652-1656.

DOI: 10.1126/science.1094060

Google Scholar

[9] F. Tepper, L. Kaledin, Nanostructures chem-bio non-woven filter, in: R. Nagarajan, W. Zukas, T.A. Hatton, S. Lee (Eds. ), Nanoscience and Nanotechnology for Chemical and Biological Defense, ACS Publications, Washington, 2009, pp.273-288.

DOI: 10.1021/bk-2009-1016.ch021

Google Scholar

[10] C-.L. Huang, J-.J. Wang, F-.H. Huang, Sintering behavior and microwave dielectric properties of nano alpha-alumina, Mater. Lett. 59 (2005) 3746-3749.

DOI: 10.1016/j.matlet.2005.06.053

Google Scholar

[11] P.K. Sharma, V.V. Varadan, V.K. Varadan, A crtical role of pH in the colloidal synthesis and phase transformation of nano size α-Al2O3 with high surface area, J. Eur. Ceram. Soc. 23 (2003) 659-666.

DOI: 10.1016/s0955-2219(02)00191-7

Google Scholar

[12] D.G. Wang, F. Guo, J.F. Chen, H. Liu, Z.T. Zhang, Preparation of nano aluminum trihydroxide by high gravity reactive precipitation, Chem. Eng. J. 121 (2006) 109-114.

DOI: 10.1016/j.cej.2006.05.016

Google Scholar

[13] R. Norouzbeigi, M. Edrissi, Preparation of nano alumina powder via combustion synthesis: porous structure optimization via Taguchi L16 design, J. Am. Ceram. Soc. 94 (2011) 4052-4058.

DOI: 10.1111/j.1551-2916.2011.04675.x

Google Scholar

[14] F. Dumeignil, K. Sato, M. Imamura, N. Matsubayashi, E. Payen, H. Shimada, Modification of structural and acidic properties of sol-gel-prepared alumina powders by changing the hydrolysis ratio, Appl. Catal. A 241 (2003) 319-329.

DOI: 10.1016/s0926-860x(02)00496-9

Google Scholar

[15] L. Jiang, P. Yubai, X. Changshu, G. Qiming, J. Jingkum, Low temperature synthesis of ultrafine α-Al2O3 powder by a simple aqueous sol–gel process, Ceram. Int. 32 (2005) 587-591.

DOI: 10.1016/j.ceramint.2005.04.015

Google Scholar

[16] G.M. Ming, J.Z. Ying, L.X. Zi, A new route to synthesis of γ-alumina nanorods, Mater. Lett. 61 (2007) 1812-1815.

Google Scholar

[17] L. Qu, C. He, Y. Yang, Y. He, Z. Liu, Hydrothermal synthesis of alumina nanotubes templated by anionic surfactant, Mater. Lett. 59 (2005) 4034-4037.

DOI: 10.1016/j.matlet.2005.07.059

Google Scholar

[18] M. Adil, H.M. Zaid, L.K. Chuan, A.F. Alta'ee, N.R.A. Latiff, Microscopic evolution of dielectric nanoparticles at different calcination temperatures synthesized via sol-gel auto-combustion, AIP Conf. Proc. 1669 (2015) 020016.

DOI: 10.1063/1.4919154

Google Scholar

[19] J. Dharma, A. Pisal, Simple method of measuring the band gap energy value of TiO2 in the powder form using a UV/Vis/NIR spectrometer, PerkinElmer Inc., Massachusetts, USA.

Google Scholar

[20] S. Carmona-Tellez, J. Guzman-Mendoza, M. Aguilar-Fruits, G. Alarcon-Flores, M. Garcia-Hipolito, M.A. Canseco, C. Falcony, Electrical, optical, and structural characteristics of Al2O3 thin films prepared by pulsed ultrasonic sprayed pyrolysis, J. Appl. Phys. 103 (2008).

DOI: 10.1063/1.2838467

Google Scholar

[21] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Co-ordination Compounds, Wiley-Interscience, New York, (1997).

Google Scholar

[22] K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, John Wiley & Sons Inc., New York-London, (1963).

DOI: 10.1002/ange.19650771321

Google Scholar

[23] V.S. Giri, R. Sarathi, S.R. Chakravarthy, C. Venkataseshaiah, Studies on production and characterization of nano-Al2O3 powder using wire explosion technique, Mater. Lett. 58 (2004) 1047-1050.

DOI: 10.1016/j.matlet.2003.08.015

Google Scholar

[24] J. Gangwar, K.K. Dev, Komala, Praveen, S.K. Tripathi, A.K. Srivastava, Microstructure, phase formations and optical bands in nanostructures alumina, Adv. Mat. Lett. 2 (2001) 402-408.

DOI: 10.5185/amlett.2011.3233

Google Scholar

[25] W.H. Gitzen, Alumina as a Ceramic Material, American Ceramic Society, Columbus, (1970).

Google Scholar

[26] C. Zuo, P.W. Jagodzinski, R-line luminescence from trace amounts of Cr3+ in aluminium oxide and its dependence on sample hydration, Appl. Spectrosc. 56 (2002) 1055-1058.

DOI: 10.1366/000370202321274872

Google Scholar

[27] J.F. Shackelford, R.H. Doremus, Ceramic and Glass Materials: Structure, Properties and Processing, Springer, New York, (2008).

Google Scholar

[28] A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD, World J. Nano Scie. Eng. 2 (2012) 154-160.

DOI: 10.4236/wjnse.2012.23020

Google Scholar

[29] P-.L. Chang, F-.S. Yen, K-.C. Cheng, H-.L. Wen, Examinations on the critical and primary crystallite sizes during θ- to α-phase transformation of ultrafine alumina powders. Nano Lett. 1 (2001) 253-261.

DOI: 10.1021/nl015501c

Google Scholar

[30] J. Ding, T. Tsuzuki, P.G. McCormick, Ultrafine Alumina Particles Prepared by Mechanochemical/Thermal Processing, J. Am. Ceram. Soc. 79 (1996) 2956-2958.

DOI: 10.1111/j.1151-2916.1996.tb08731.x

Google Scholar

[31] B.N. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, Y. Kagawa, Microstructure and optical properties of transparent alumina, Acta. Mater. 57 (2009) 1319-1326.

DOI: 10.1016/j.actamat.2008.11.010

Google Scholar