Electrochemical Study of Pyrene on Glassy Carbon Electrode Modified with Metal-Oxide Nanoparticles and Graphene Oxide/Multi-Walled Carbon Nanotubes Nanoplatform

Article Preview

Abstract:

This work describes and compares the electron transport and electrocatalytic properties of chemically synthesised cobalt oxide (Co3O4) and nickel oxide (NiO) nanoparticles grafted onto graphene oxide (GO)/acid treated multi-walled carbon nanotubes decorated glassy carbon electrode. Successful synthesis of these nano materials was confirmed using microscopic and spectroscopic techniques. Successful modification of electrode was confirmed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Results showed that the GCE-fMWCNT-NiO and GCE-fMWCNT- Co3O4 nanocomposite modified electrodes gave faster electron transfer process in both 5 mM Ferri/Ferro ([Fe(CN)6]3−/4−) redox probe and 0.1 M phosphate buffer solution (PBS). GCE-fMWCNT-NiO and GCE-fMWCNT-Co3O4 electrodes also gave enhanced Pyrene oxidation current compared with bare GCE and other electrodes studied. The charge transfer resistance, electron transfer rate constant (ks), Tafel value, limit of detection (LoD), sensitivity, adsorption equilibrium constant (β), Gibbs free energy change due to the adsorption (ΔGoads) of Pyrene onto the GCE-fMWCNT-Co3O4 are established and discussed. The LoD and ΔGoads for Pyrene were 1.62 nM and -15.8 kJ/mol, respectively, over a linear dynamic range of 1.0 x 10-9 – 100 x 10-9 M. The electro-oxidation of Pyrene was a diffusion dominated process, but demonstrated adsorption thought to be as a result of a combination of the strong pi-pi electron interactions between Pyrene and the MWCNT, thus the thin film formed on the surface of the electrode by the analyte and its reaction intermediates. The LoD compared favourably with literature reported values. GCE-fMWCNT-Co3O4 gave better performance to Pyrene electrooxidation, good resistance to electrode fouling, higher catalytic rate constant and lower limit of detection. The sensor is easy to fabricate, cost effective and could be used for routine determination of Pyrene in food and environmental matrices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

158-195

Citation:

Online since:

November 2016

Export:

Price:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U.S. ATSDR, Toxicological Profile for Poly Aromatic Hydrocarbons. Toxicology and Toxicology Information Branch, ATSDR (1995).

Google Scholar

[2] O. Blondin, C. Viau, Benzo (a) pyrene-blood protein adducts in wild woodchucks used as biological sentinels of environmental polycyclic aromatic hydrocarbons contamination. Arch. Environ. Contam. Toxicol. 23(1992) 310-315.

DOI: 10.1007/bf00216239

Google Scholar

[3] R. Dickerson, M. Hooper, N. Gard, G. Cobb, R. Kendall, Toxicological foundations of ecological risk assessment: biomarker development and interpretation based upon laboratory and wildlife species. Environ. Health Perspect. 102 (1994) 65-69.

DOI: 10.1289/ehp.94102s1265a

Google Scholar

[4] X. M. Liu, X.G. Zhang, NiO-based composite electrode with RuO2 for electrochemical capacitors. Electrochim. Acta. 49 (2004) 229-232.

DOI: 10.1016/j.electacta.2003.08.005

Google Scholar

[5] A.S. Adekunle, K. I. Ozoemena,B. O. Agboola, MWCNTs/metal (Ni, Co, Fe) oxide nanocomposite as potential material for supercapacitors application in acidic and neutral media.J. Solid State Electrochem. 17(2013) 1311-1320.

DOI: 10.1007/s10008-012-1978-y

Google Scholar

[6] A. Salimi, E. Sharifi, A. Noorbakhsh, S. Soltanian, Direct electrochemistry and electrocatalytic activity of catalase immobilized onto electrodeposited nano-scale islands of nickel oxide. Biophys. Chem. 125(2007) 540-548.

DOI: 10.1016/j.bpc.2006.11.004

Google Scholar

[7] X. -C. Dong, H. Xu, X. -W. Wang, Y. -X. Huang, M.B. Chan-Park, H. Zhang, L. -H. Wang, W. Huang, P. Chen, 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano. 6(2012) 3206-3213.

DOI: 10.1021/nn300097q

Google Scholar

[8] J.W. Schultze, Electrodes of Conductive Metallic Oxides, Part A. in S. Trasatti (Ed. ) Berichte der Bunsengesellschaft für physikalische Chemie, Elsevier Scientific Publishing Company, Amsterdam, New York 1981. pp.461-462.

DOI: 10.1002/bbpc.19810850527

Google Scholar

[9] A. Salimi, R. Hallaj, S. Soltanian, H Mamkhezri, Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles. Anal. Chim. Acta. 594 (2007) 24-31.

DOI: 10.1016/j.aca.2007.05.010

Google Scholar

[10] A. Salimi, H. Mamkhezri, R. Hallaj, S. Soltanian, Electrochemical detection of trace amount of arsenic(III) at glassy carbon electrode modified with cobalt oxide nanoparticles. Sens. and Actuators, B 129(2008) 246-254.

DOI: 10.1016/j.snb.2007.08.017

Google Scholar

[11] A. Salimi, R. Hallaj, H Mamkhezri, S. M. T. Hosaini, Electrochemical properties and electrocatalytic activity of FAD immobilized onto cobalt oxide nanoparticles: Application to nitrite detection. J. Electroanal. Chem. 619-620 (2008) 31-38.

DOI: 10.1016/j.jelechem.2008.03.003

Google Scholar

[12] L. Xiang, X.Y. Deng, Y. Jin, Experimental study on synthesis of NiO nano-particles. Scripta Mater. 47(2002) 219-224.

DOI: 10.1016/s1359-6462(02)00108-2

Google Scholar

[13] W. Yao, J. Yang, J. Wang, L. Tao, Synthesis and electrochemical performance of carbon nanofiber–cobalt oxide composites. Electrochim. Acta. 53(2008) 7326-7330.

DOI: 10.1016/j.electacta.2008.04.010

Google Scholar

[14] J. Wang, Analytical Electrochemistry. second ed., John Wiley & Sons, (2001).

Google Scholar

[15] D. C. Marcano, D.V. Kosynkin, J. M. . Berlin, A Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, Improved Synthesis of Graphene Oxide. ACS Nano, 4 (2010) 4806-4814.

DOI: 10.1021/nn1006368

Google Scholar

[16] S. Reich, C. Thomsen, Raman spectroscopy of graphite. Philos. Trans. R. Soc. London, Ser. A: Math. Phys. and Eng. Sc. 362(2004) 2271-2288.

Google Scholar

[17] Y. Wang, D.C. Alsmeyer, R.L. McCreery, Raman spectroscopy of carbon materials: Structural basis of observed spectra. Chem. Mater. 2(1990) 557-563.

DOI: 10.1021/cm00011a018

Google Scholar

[18] M. Masikini, S. N. Mailu, A. Tsegaye, C. O. Ikpo, N. J. Njomo, T. T. Waryo, P. G. L Baker,E. I. Iwuoha, In-situ Electrochemical Synthesis, Microscopic and Spectroscopic Characterisations of Electroactive poly (2, 5-dimethoxyaniline)–Multi-Walled Carbon Nanotubes Composite Films in Neutral Media. Int. J. Electrochem. Sci. 9 (2014).

DOI: 10.1016/s1452-3981(23)10948-5

Google Scholar

[19] L. Bokobza, J. Zhang, Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polym. Lett. 6 (2012) 601-608.

DOI: 10.3144/expresspolymlett.2012.63

Google Scholar

[20] S. Costa, E. Borowiak-Palen, M. Kruszynska, A. Bachmatiuk, R. J. Kalenczuk, Characterization of carbon nanotubes by Raman spectroscopy. Mater Sci-Poland. 26(2008) 433-441.

Google Scholar

[21] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Chemical oxidation of multiwalled carbon nanotubes. Carbon. 46(2008) 833-840.

DOI: 10.1016/j.carbon.2008.02.012

Google Scholar

[22] S. Xu, L. Yong, P. Wu, One-Pot, green, rapid synthesis of flowerlike gold nanoparticles/reduced graphene oxide composite with regenerated silk fibroin as efficient oxygen reduction electrocatalysts. ACS Appl. Mater. & Interfaces. 5(2013) 654-662.

DOI: 10.1021/am302076x

Google Scholar

[23] F. Thema, M. J. Moloto, E. D. Dikio, N.N. Nyangiwe, L. Kotsedi, M. Maaza, M. Khenfouch, Synthesis and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide. J. Chemistry. 2013(2012). 6 pages.

DOI: 10.1155/2013/150536

Google Scholar

[24] J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, J.M.D. Tascon, Graphene oxide dispersions in organic solvents. Langmuir. 24(2008) 10560-10564.

DOI: 10.1021/la801744a

Google Scholar

[25] O. O. Tovide, Graphenated polyaniline nanocomposite for the determination of polyaromatic hydrocarbons (PAHs) in water. In the Department Of Chemistry. 2013, University Of The Western Cape: Western Cape, Cape Town, Bellvile.

Google Scholar

[26] D. Pan, J. Zhang, Z. Li, M. Wu., Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 22(2010) 734-738.

DOI: 10.1002/adma.200902825

Google Scholar

[27] G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C. 112(2008) 8192-8195.

DOI: 10.1021/jp710931h

Google Scholar

[28] P. M Masipa, T. Magadzu, B. Mkhondo, Decoration of multi-walled carbon nanotubes by metal nanoparticles and metal oxides using chemical evaporation method. South African J. Chem. 66(2013). 00-00.

Google Scholar

[29] H. Khani, O. Moradi, Influence of surface oxidation on the morphological and crystallographic structure of multi-walled carbon nanotubes via different oxidants. J. Nanostructure in Chem. 3(2013) 73.

DOI: 10.1186/2193-8865-3-73

Google Scholar

[30] T. A. Saleh, The role of carbon nanotubes in enhancement of photocatalysis, in S. Suzuki (Ed. ), Syntheses and Applications of Carbon Nanotubes and Their Composites, InTech , 2013 pp.480-494.

DOI: 10.5772/51050

Google Scholar

[31] V.A. Kumary, T. E. M. Nancy, J. Divya, K. Sreevalsan. Nonenzymatic glucose sensor: glassy carbon electrode modified with graphene-nickel/nickel oxide composite. Int. J. Electrochem. Sci. 8 (2013) 2220-2228.

Google Scholar

[32] Kooti, M. and L. Matouri, A Facile and Mild Method for Synthesis of Nickel Oxide Nanoparticles in the Presence of Various Surfactants. Res. and Rev.: J Mater. Sc. 2(2014) 37-42.

DOI: 10.4172/2321-6212.1000118

Google Scholar

[33] L. A. Saghatforoush, M. Hasanzadeh, S. Sanati, R. Mehdizadeh, Ni(OH)2 and NiO nanostructures: synthesis, characterization and electrochemical performance. Bull. Korean Chem. Soc. 33 (2012) 2613-2618.

DOI: 10.5012/bkcs.2012.33.8.2613

Google Scholar

[34] P. Scardi, M. Leoni, R. Delhez, Line broadening analysis using integral breadth methods: a critical review. J. Appl. Crystallogr. 37(2004) 381-390.

DOI: 10.1107/s0021889804004583

Google Scholar

[35] S. Farhadi, J. Safabakhsh, P. Zaringhadam, Synthesis, characterization, and investigation of optical and magnetic properties of cobalt oxide (Co3O4) nanoparticles. J. Nanostructure Chem. 3(2013) 1-9.

DOI: 10.1186/2193-8865-3-69

Google Scholar

[36] B.B. -a-M. Baitoul, A comparative study of multi-walled carbon nanotubes purification techniques. J. Mater. Sci Eng. Adv. Tech. 9(2014) 1-15.

Google Scholar

[37] S. Osswald, M. Havel, Y. Gogotsi, Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J. Raman Spectrosc. 38(2007) 728-736.

DOI: 10.1002/jrs.1686

Google Scholar

[38] L. Xiang, X.Y. Deng, Y. Jin, Experimental study on synthesis of NiO nano-particles. Scripta Mater. 47(2002). 219-224.

DOI: 10.1016/s1359-6462(02)00108-2

Google Scholar

[39] S. Radhakrishnan, K. Karthikeyan, S. Chinnathambi, W. Jeyaraj S.J. Kim. A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Appl. Catal. B: Env. 148 (2014).

DOI: 10.1016/j.apcatb.2013.10.044

Google Scholar

[40] A. S. Adekunle, K.I. Ozoemena, Electron transfer behaviour of single-walled carbon nanotubes electro-decorated with nickel and nickel oxide layers. Electrochim. Acta. 53(2008) 5774-5782.

DOI: 10.1016/j.electacta.2008.03.044

Google Scholar

[41] S. Sunohara, N. Katsunori, Y. Kiyochika, U. Mitsuo, E. Michio T. Yoshio, Electrocatalysis of transition-metal oxides for reduction and oxidation of nitrite ions. J. Electroanal. Chem. 354(1993) 161-171.

DOI: 10.1016/0022-0728(93)80331-b

Google Scholar

[42] W. Xing, L. Feng, Y. Zi-feng, G. Q. Lu. Synthesis and electrochemical properties of mesoporous nickel oxide.  J. Power Sources 134 (2004) 324-330.

DOI: 10.1016/j.jpowsour.2004.03.038

Google Scholar

[43] K.S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science 306(2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[44] D. K. Kampouris, C.E. Banks, Exploring the physicoelectrochemical properties of graphene. Chem. Commun. 46 (2010) 8986-8988.

DOI: 10.1039/c0cc02860f

Google Scholar

[45] D.A. C Brownson, L. J. Munro, D. K. Kampouris, C. E. Banks, Electrochemistry of graphene: not such a beneficial electrode material? RSC Adv. 1(2011) 978-988.

DOI: 10.1039/c1ra00393c

Google Scholar

[46] M.C. Henstridge, E.J.F. Dickinson, R.G. Compton, On the estimation of the diffuse double layer of carbon nanotubes using classical theory: Curvature effects on the Gouy–Chapman limit. Chem. Phys. Lett. 485 (2010) 167-170.

DOI: 10.1016/j.cplett.2009.12.034

Google Scholar

[47] M. P. Pujadó, Carbon nanotubes as platforms for biosensors with electrochemical and electronic transduction. Springer Science & Business Media, (2012).

Google Scholar

[48] H. Xia, D. Zhu, Z. Luo, Y. Yu, X. Shi, G. Yuan, J. Xie, Hierarchically structured Co3O4@Pt@MnO2 nanowire arrays for high-performance supercapacitors. Sci. Rep. 3 (2013) 2978.

DOI: 10.1038/srep02978

Google Scholar

[49] E. Laouini, M. Hamdani, M. I. S. Pereira, Y. Berghoute, J. Douch, M. H. Mendonca, R. N. Singh. Impedance study of spinel type Fe-Co3O4 oxide thin film electrodes in alkaline medium. Int. J. Electrochem. Sci. 4 (2009) 1074-84.

DOI: 10.1016/s1452-3981(23)15207-2

Google Scholar

[50] I. Danaee, M. Jafarian, F. Forouzandeh, F. Gobal, M. G. Mahjani. Impedance spectroscopy analysis of glucose electro-oxidation on Ni-modified glassy carbon electrode.  Electrochim. Acta. 53 (2008) 6602-6609.

DOI: 10.1016/j.electacta.2008.04.042

Google Scholar

[51] H. -J. Guo, Q. -M. Sun, X. -H. Li, Z. -X. Wang, W. -J. Peng, Synthesis and electrochemical performance of Co3O4/C composite anode for lithium ion batteries. Trans. Nonferrous Met. Soc. China. 19 (2009) 372-376.

DOI: 10.1016/s1003-6326(08)60280-0

Google Scholar

[52] C.D. Gu, M.L. Huang, X. Ge, H. Zheng, X.L. Wang, J.P. Tu, NiO electrode for methanol electro-oxidation: mesoporous vs. nanoparticulate. Int. J. Hydrogen Energy. 39 (2014) 10892-10901.

DOI: 10.1016/j.ijhydene.2014.05.028

Google Scholar

[53] C. Xiang, M. Li, M. Zhi., A. Manivannan, N. Wu. A reduced graphene oxide/Co3O4 composite for supercapacitor electrode. J. Power Sources. 226 (2013) 65-70.

DOI: 10.1016/j.jpowsour.2012.10.064

Google Scholar

[54] N.H. Khdary, M.E. Abdesalam, G. E. L Enany, Mesoporous polyaniline films for high performance supercapacitors. J. Electrochem. Soc. 161(2014) G63-G68.

DOI: 10.1149/2.0441409jes

Google Scholar

[55] S. H. Aboutalebi, A. T. Chidembo, M. Salari, K. Konstantinov,D. Wexler, H. K. Liu, S. X. Dou, Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ. Sci. 4 (2011) 1855-1865.

DOI: 10.1039/c1ee01039e

Google Scholar

[56] A. T. Chidembo, K.I. Ozoemena, B. O. Agboola, V. Gupta, G.G. Wildgoose, R. G. Compton, Nickel (II) tetra-aminophthalocyanine modified MWCNTs as potential nanocomposite materials for the development of supercapacitors. Energy Environ. Sci. 3(2010).

DOI: 10.1039/b915920g

Google Scholar

[57] A. S. Adekunle, B. O. Agboola, J. Pillay, K.I. Ozoemena, Electrocatalytic detection of dopamine at single-walled carbon nanotubes–iron (III) oxide nanoparticles platform. Sens. Actuators B: Chem. 148(2010) 93-102.

DOI: 10.1016/j.snb.2010.03.088

Google Scholar

[58] P. Bouvrette, S. Hrapovic, K. B. Male, J. H. Luong,  Analysis of the 16 Environmental Protection Agency priority polycyclic aromatic hydrocarbons by high performance liquid chromatography-oxidized diamond film electrodes. J. Chromatogr. A. 1103 (2006).

DOI: 10.1016/j.chroma.2005.11.028

Google Scholar

[59] G. Skandan, A. Singhal, C. I. Contescu, K. Putyera, K. Nanomaterials: Advances in technology and industry, in J.A. Schwarz (Ed) Dekker encyclopedia of nanoscience and nanotechnology, Taylor and Francis Group, New York, 2009, p.2788.

DOI: 10.1201/noe0849396397.ch240

Google Scholar

[60] W. Li, C. Tan, M. A. Lowe, H. D. Abruna, D. C. Ralph, Electrochemistry of individual monolayer graphene sheets.  ACS Nano 5 (2011): 2264-2270.

DOI: 10.1021/nn103537q

Google Scholar

[61] K.E. Hammel, B. Kalyanaraman, T.K. Kirk, Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J. Biol. Chem. 261(1986) 16948-16952.

DOI: 10.1016/s0021-9258(19)75982-1

Google Scholar

[62] F. Kodera, M. Umeda, A. Yamada, Detection of hypochlorous acid using reduction wave during anodic cyclic voltammetry. Jpn. J. Appl. Phys. 44(2005) L718.

DOI: 10.1143/jjap.44.l718

Google Scholar

[63] E.S.Z. El-Ashtoukhy, N.K. Amin, Removal of acid green dye 50 from wastewater by anodic oxidation and electrocoagulation—A comparative study. J. Hazard. Mater. 179 (2010) 113-119.

DOI: 10.1016/j.jhazmat.2010.02.066

Google Scholar

[64] D. Zheng, S. K. Vashist, M.M. Dykas, S. Saha, K. Al-Rubeaan, E. Lam, J.H. T Luong, F.S. Sheu, Graphene versus multi-walled carbon nanotubes for electrochemical glucose biosensing.  Mater. 6(2013): 1011-1027.

DOI: 10.3390/ma6031011

Google Scholar

[65] J. Björk, F. Hanke, C.A. Palma, P. Samori, M. Cecchini, M. Persson, Adsorption of aromatic and anti-aromatic systems on graphene through π− π stacking. J. Phys. Chem. Lett. 1(2010), 3407-3412.

DOI: 10.1021/jz101360k

Google Scholar

[66] L. Ji, W. Chen, Z. Xu, S. Zheng, D. Zhu, Graphene nanosheets and graphite oxide as promising adsorbents for removal of organic contaminants from aqueous solution.  J. Environ. Qual. 42 (2013) 191-198.

DOI: 10.2134/jeq2012.0172

Google Scholar

[67] A.S. Adekunle, L. Seonyane, P. L. Gwala, T. P. Tsele, L. O. Olasunkanmi, E. O. Fayemi, D. Boikanyo, E. E. Ebenso, Electrochemical response of nitrite and nitric oxide on graphene oxide nanoparticles doped with Prussian blue (PB) and Fe2O3 nanoparticles. RSC Adv. 5(2015).

DOI: 10.1039/c5ra02008e

Google Scholar

[68] S. Majdi, A. Jabbari, H. Heli, A. A. Moosavi-Movahedi, Electrocatalytic oxidation of some amino acids on a nickel–curcumin complex modified glassy carbon electrode. Electrochim. Acta.  52 (2007) 4622-4629.

DOI: 10.1016/j.electacta.2007.01.022

Google Scholar

[69] A. J. Bard, L. R. Faulkner, Electrochemical methods: Fundamentals and Applications. second ed., John Wiley & Sons, Inc. (2001).

Google Scholar

[70] E. I. Iwuoha, D. S. de Villaverde, N. P. Garcia, M. R. Smyth, J. M. Pingarron, Reactivities of organic phase biosensors. 2. The amperometric behaviour of horseradish peroxidase immobilised on a platinum electrode modified with an electrosynthetic polyaniline film. Biosens. Bioelectron. 12 (1997).

DOI: 10.1016/s0956-5663(97)00042-0

Google Scholar

[71] S. N. Mailu, T.T. Waryo, P. M. Ndangili, F.R. Ngece, A. A. Baleg, P.G. Baker, E. I. Iwuoha, Determination of anthracene on Ag-Au alloy nanoparticles/overoxidized-polypyrrole composite modified glassy carbon electrodes. Sens. 10(2010) 9449-9465.

DOI: 10.3390/s101009449

Google Scholar

[72] J.M. Zen, A. S. Kumar, M. R. Chang, Electrocatalytic oxidation and trace detection of amitrole using a Nafion/lead–ruthenium oxide pyrochlore chemically modified electrode. Electrochim. Acta. 45(2000) 1691-1700.

DOI: 10.1016/s0013-4686(99)00327-8

Google Scholar

[73] J. N. Soderberg, A. C. Co, A.H. C Sirk, V. I. Birss. Impact of porous electrode properties on the electrochemical transfer coefficient. J. Phys. Chem. B. 110(2006) 10401-10410.

DOI: 10.1021/jp060372f

Google Scholar

[74] B. O. Agboola, T. Nyokong, Comparative electrooxidation of nitrite by electrodeposited Co(II), Fe(II) and Mn(III) tetrakis (benzylmercapto) and tetrakis (dodecylmercapto) phthalocyanines on gold electrodes. Anal. Chim. Acta. 587 (2007) 116-123.

DOI: 10.1016/j.aca.2007.01.031

Google Scholar

[75] A. J. Bard, L.R. Faulkner, Electrochemical methods: Fundamentals and Applications. Wiley, New York, (1980).

Google Scholar

[76] G. D. Christian, Analytical chemistry, sixth edition, Wiley, (2004).

Google Scholar

[77] C. Rassie, R. A. Olowu, T. T. Waryo, L. Wilson, A. Williams, P. G. Baker, E. I. Iwuoha. Dendritic 7T-polythiophene electro-catalytic sensor system for the determination of polycyclic aromatic hydrocarbons. Intern. J. Electrochem. Sci. 6 (2011).

DOI: 10.1016/s1452-3981(23)18158-2

Google Scholar

[78] W.D. Wang, Y.M. Huang, W.Q. Shu, J. Cao, Multiwalled carbon nanotubes as adsorbents of solid-phase extraction for determination of polycyclic aromatic hydrocarbons in environmental waters coupled with high-performance liquid chromatography. J. Chromatogr. A. 1173 (2007).

DOI: 10.1016/j.chroma.2007.10.027

Google Scholar

[79] H. Ju, D. Leech, Electrochemical study of a metallothionein modified gold disk electrode and its action on Hg2+ cations. J. Electroanal. Chem. 484(2000) 150-156.

DOI: 10.1016/s0022-0728(00)00071-1

Google Scholar

[80] G. Avci, Corrosion inhibition of indole-3-acetic acid on mild steel in 0. 5M HCl. Colloids Surf. A: Physicochemical Eng. Aspects. 317 (2008) 730-736.

DOI: 10.1016/j.colsurfa.2007.12.009

Google Scholar

[81] C. Ehli, G. M. Aminur Rahman, N. Jux ,D. Balbinot, D. M. Guldi, F. Paolucci, M. Marcaccio, D. Paolucci, M. Melle-Franco, F. Zerbetto, S. Campidelli, M. Prato, Interactions in Single Wall Carbon Nanotubes/Pyrene/Porphyrin Nanohybrids. J. Am. Chem. Soc. 128 (2006).

DOI: 10.1021/ja0624974

Google Scholar