[1]
U.S. ATSDR, Toxicological Profile for Poly Aromatic Hydrocarbons. Toxicology and Toxicology Information Branch, ATSDR (1995).
Google Scholar
[2]
O. Blondin, C. Viau, Benzo (a) pyrene-blood protein adducts in wild woodchucks used as biological sentinels of environmental polycyclic aromatic hydrocarbons contamination. Arch. Environ. Contam. Toxicol. 23(1992) 310-315.
DOI: 10.1007/bf00216239
Google Scholar
[3]
R. Dickerson, M. Hooper, N. Gard, G. Cobb, R. Kendall, Toxicological foundations of ecological risk assessment: biomarker development and interpretation based upon laboratory and wildlife species. Environ. Health Perspect. 102 (1994) 65-69.
DOI: 10.1289/ehp.94102s1265a
Google Scholar
[4]
X. M. Liu, X.G. Zhang, NiO-based composite electrode with RuO2 for electrochemical capacitors. Electrochim. Acta. 49 (2004) 229-232.
DOI: 10.1016/j.electacta.2003.08.005
Google Scholar
[5]
A.S. Adekunle, K. I. Ozoemena,B. O. Agboola, MWCNTs/metal (Ni, Co, Fe) oxide nanocomposite as potential material for supercapacitors application in acidic and neutral media.J. Solid State Electrochem. 17(2013) 1311-1320.
DOI: 10.1007/s10008-012-1978-y
Google Scholar
[6]
A. Salimi, E. Sharifi, A. Noorbakhsh, S. Soltanian, Direct electrochemistry and electrocatalytic activity of catalase immobilized onto electrodeposited nano-scale islands of nickel oxide. Biophys. Chem. 125(2007) 540-548.
DOI: 10.1016/j.bpc.2006.11.004
Google Scholar
[7]
X. -C. Dong, H. Xu, X. -W. Wang, Y. -X. Huang, M.B. Chan-Park, H. Zhang, L. -H. Wang, W. Huang, P. Chen, 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano. 6(2012) 3206-3213.
DOI: 10.1021/nn300097q
Google Scholar
[8]
J.W. Schultze, Electrodes of Conductive Metallic Oxides, Part A. in S. Trasatti (Ed. ) Berichte der Bunsengesellschaft für physikalische Chemie, Elsevier Scientific Publishing Company, Amsterdam, New York 1981. pp.461-462.
DOI: 10.1002/bbpc.19810850527
Google Scholar
[9]
A. Salimi, R. Hallaj, S. Soltanian, H Mamkhezri, Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles. Anal. Chim. Acta. 594 (2007) 24-31.
DOI: 10.1016/j.aca.2007.05.010
Google Scholar
[10]
A. Salimi, H. Mamkhezri, R. Hallaj, S. Soltanian, Electrochemical detection of trace amount of arsenic(III) at glassy carbon electrode modified with cobalt oxide nanoparticles. Sens. and Actuators, B 129(2008) 246-254.
DOI: 10.1016/j.snb.2007.08.017
Google Scholar
[11]
A. Salimi, R. Hallaj, H Mamkhezri, S. M. T. Hosaini, Electrochemical properties and electrocatalytic activity of FAD immobilized onto cobalt oxide nanoparticles: Application to nitrite detection. J. Electroanal. Chem. 619-620 (2008) 31-38.
DOI: 10.1016/j.jelechem.2008.03.003
Google Scholar
[12]
L. Xiang, X.Y. Deng, Y. Jin, Experimental study on synthesis of NiO nano-particles. Scripta Mater. 47(2002) 219-224.
DOI: 10.1016/s1359-6462(02)00108-2
Google Scholar
[13]
W. Yao, J. Yang, J. Wang, L. Tao, Synthesis and electrochemical performance of carbon nanofiber–cobalt oxide composites. Electrochim. Acta. 53(2008) 7326-7330.
DOI: 10.1016/j.electacta.2008.04.010
Google Scholar
[14]
J. Wang, Analytical Electrochemistry. second ed., John Wiley & Sons, (2001).
Google Scholar
[15]
D. C. Marcano, D.V. Kosynkin, J. M. . Berlin, A Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, Improved Synthesis of Graphene Oxide. ACS Nano, 4 (2010) 4806-4814.
DOI: 10.1021/nn1006368
Google Scholar
[16]
S. Reich, C. Thomsen, Raman spectroscopy of graphite. Philos. Trans. R. Soc. London, Ser. A: Math. Phys. and Eng. Sc. 362(2004) 2271-2288.
Google Scholar
[17]
Y. Wang, D.C. Alsmeyer, R.L. McCreery, Raman spectroscopy of carbon materials: Structural basis of observed spectra. Chem. Mater. 2(1990) 557-563.
DOI: 10.1021/cm00011a018
Google Scholar
[18]
M. Masikini, S. N. Mailu, A. Tsegaye, C. O. Ikpo, N. J. Njomo, T. T. Waryo, P. G. L Baker,E. I. Iwuoha, In-situ Electrochemical Synthesis, Microscopic and Spectroscopic Characterisations of Electroactive poly (2, 5-dimethoxyaniline)–Multi-Walled Carbon Nanotubes Composite Films in Neutral Media. Int. J. Electrochem. Sci. 9 (2014).
DOI: 10.1016/s1452-3981(23)10948-5
Google Scholar
[19]
L. Bokobza, J. Zhang, Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polym. Lett. 6 (2012) 601-608.
DOI: 10.3144/expresspolymlett.2012.63
Google Scholar
[20]
S. Costa, E. Borowiak-Palen, M. Kruszynska, A. Bachmatiuk, R. J. Kalenczuk, Characterization of carbon nanotubes by Raman spectroscopy. Mater Sci-Poland. 26(2008) 433-441.
Google Scholar
[21]
V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Chemical oxidation of multiwalled carbon nanotubes. Carbon. 46(2008) 833-840.
DOI: 10.1016/j.carbon.2008.02.012
Google Scholar
[22]
S. Xu, L. Yong, P. Wu, One-Pot, green, rapid synthesis of flowerlike gold nanoparticles/reduced graphene oxide composite with regenerated silk fibroin as efficient oxygen reduction electrocatalysts. ACS Appl. Mater. & Interfaces. 5(2013) 654-662.
DOI: 10.1021/am302076x
Google Scholar
[23]
F. Thema, M. J. Moloto, E. D. Dikio, N.N. Nyangiwe, L. Kotsedi, M. Maaza, M. Khenfouch, Synthesis and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide. J. Chemistry. 2013(2012). 6 pages.
DOI: 10.1155/2013/150536
Google Scholar
[24]
J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, J.M.D. Tascon, Graphene oxide dispersions in organic solvents. Langmuir. 24(2008) 10560-10564.
DOI: 10.1021/la801744a
Google Scholar
[25]
O. O. Tovide, Graphenated polyaniline nanocomposite for the determination of polyaromatic hydrocarbons (PAHs) in water. In the Department Of Chemistry. 2013, University Of The Western Cape: Western Cape, Cape Town, Bellvile.
Google Scholar
[26]
D. Pan, J. Zhang, Z. Li, M. Wu., Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 22(2010) 734-738.
DOI: 10.1002/adma.200902825
Google Scholar
[27]
G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets. J. Phys. Chem. C. 112(2008) 8192-8195.
DOI: 10.1021/jp710931h
Google Scholar
[28]
P. M Masipa, T. Magadzu, B. Mkhondo, Decoration of multi-walled carbon nanotubes by metal nanoparticles and metal oxides using chemical evaporation method. South African J. Chem. 66(2013). 00-00.
Google Scholar
[29]
H. Khani, O. Moradi, Influence of surface oxidation on the morphological and crystallographic structure of multi-walled carbon nanotubes via different oxidants. J. Nanostructure in Chem. 3(2013) 73.
DOI: 10.1186/2193-8865-3-73
Google Scholar
[30]
T. A. Saleh, The role of carbon nanotubes in enhancement of photocatalysis, in S. Suzuki (Ed. ), Syntheses and Applications of Carbon Nanotubes and Their Composites, InTech , 2013 pp.480-494.
DOI: 10.5772/51050
Google Scholar
[31]
V.A. Kumary, T. E. M. Nancy, J. Divya, K. Sreevalsan. Nonenzymatic glucose sensor: glassy carbon electrode modified with graphene-nickel/nickel oxide composite. Int. J. Electrochem. Sci. 8 (2013) 2220-2228.
Google Scholar
[32]
Kooti, M. and L. Matouri, A Facile and Mild Method for Synthesis of Nickel Oxide Nanoparticles in the Presence of Various Surfactants. Res. and Rev.: J Mater. Sc. 2(2014) 37-42.
DOI: 10.4172/2321-6212.1000118
Google Scholar
[33]
L. A. Saghatforoush, M. Hasanzadeh, S. Sanati, R. Mehdizadeh, Ni(OH)2 and NiO nanostructures: synthesis, characterization and electrochemical performance. Bull. Korean Chem. Soc. 33 (2012) 2613-2618.
DOI: 10.5012/bkcs.2012.33.8.2613
Google Scholar
[34]
P. Scardi, M. Leoni, R. Delhez, Line broadening analysis using integral breadth methods: a critical review. J. Appl. Crystallogr. 37(2004) 381-390.
DOI: 10.1107/s0021889804004583
Google Scholar
[35]
S. Farhadi, J. Safabakhsh, P. Zaringhadam, Synthesis, characterization, and investigation of optical and magnetic properties of cobalt oxide (Co3O4) nanoparticles. J. Nanostructure Chem. 3(2013) 1-9.
DOI: 10.1186/2193-8865-3-69
Google Scholar
[36]
B.B. -a-M. Baitoul, A comparative study of multi-walled carbon nanotubes purification techniques. J. Mater. Sci Eng. Adv. Tech. 9(2014) 1-15.
Google Scholar
[37]
S. Osswald, M. Havel, Y. Gogotsi, Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J. Raman Spectrosc. 38(2007) 728-736.
DOI: 10.1002/jrs.1686
Google Scholar
[38]
L. Xiang, X.Y. Deng, Y. Jin, Experimental study on synthesis of NiO nano-particles. Scripta Mater. 47(2002). 219-224.
DOI: 10.1016/s1359-6462(02)00108-2
Google Scholar
[39]
S. Radhakrishnan, K. Karthikeyan, S. Chinnathambi, W. Jeyaraj S.J. Kim. A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Appl. Catal. B: Env. 148 (2014).
DOI: 10.1016/j.apcatb.2013.10.044
Google Scholar
[40]
A. S. Adekunle, K.I. Ozoemena, Electron transfer behaviour of single-walled carbon nanotubes electro-decorated with nickel and nickel oxide layers. Electrochim. Acta. 53(2008) 5774-5782.
DOI: 10.1016/j.electacta.2008.03.044
Google Scholar
[41]
S. Sunohara, N. Katsunori, Y. Kiyochika, U. Mitsuo, E. Michio T. Yoshio, Electrocatalysis of transition-metal oxides for reduction and oxidation of nitrite ions. J. Electroanal. Chem. 354(1993) 161-171.
DOI: 10.1016/0022-0728(93)80331-b
Google Scholar
[42]
W. Xing, L. Feng, Y. Zi-feng, G. Q. Lu. Synthesis and electrochemical properties of mesoporous nickel oxide. J. Power Sources 134 (2004) 324-330.
DOI: 10.1016/j.jpowsour.2004.03.038
Google Scholar
[43]
K.S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science 306(2004) 666-669.
DOI: 10.1126/science.1102896
Google Scholar
[44]
D. K. Kampouris, C.E. Banks, Exploring the physicoelectrochemical properties of graphene. Chem. Commun. 46 (2010) 8986-8988.
DOI: 10.1039/c0cc02860f
Google Scholar
[45]
D.A. C Brownson, L. J. Munro, D. K. Kampouris, C. E. Banks, Electrochemistry of graphene: not such a beneficial electrode material? RSC Adv. 1(2011) 978-988.
DOI: 10.1039/c1ra00393c
Google Scholar
[46]
M.C. Henstridge, E.J.F. Dickinson, R.G. Compton, On the estimation of the diffuse double layer of carbon nanotubes using classical theory: Curvature effects on the Gouy–Chapman limit. Chem. Phys. Lett. 485 (2010) 167-170.
DOI: 10.1016/j.cplett.2009.12.034
Google Scholar
[47]
M. P. Pujadó, Carbon nanotubes as platforms for biosensors with electrochemical and electronic transduction. Springer Science & Business Media, (2012).
Google Scholar
[48]
H. Xia, D. Zhu, Z. Luo, Y. Yu, X. Shi, G. Yuan, J. Xie, Hierarchically structured Co3O4@Pt@MnO2 nanowire arrays for high-performance supercapacitors. Sci. Rep. 3 (2013) 2978.
DOI: 10.1038/srep02978
Google Scholar
[49]
E. Laouini, M. Hamdani, M. I. S. Pereira, Y. Berghoute, J. Douch, M. H. Mendonca, R. N. Singh. Impedance study of spinel type Fe-Co3O4 oxide thin film electrodes in alkaline medium. Int. J. Electrochem. Sci. 4 (2009) 1074-84.
DOI: 10.1016/s1452-3981(23)15207-2
Google Scholar
[50]
I. Danaee, M. Jafarian, F. Forouzandeh, F. Gobal, M. G. Mahjani. Impedance spectroscopy analysis of glucose electro-oxidation on Ni-modified glassy carbon electrode. Electrochim. Acta. 53 (2008) 6602-6609.
DOI: 10.1016/j.electacta.2008.04.042
Google Scholar
[51]
H. -J. Guo, Q. -M. Sun, X. -H. Li, Z. -X. Wang, W. -J. Peng, Synthesis and electrochemical performance of Co3O4/C composite anode for lithium ion batteries. Trans. Nonferrous Met. Soc. China. 19 (2009) 372-376.
DOI: 10.1016/s1003-6326(08)60280-0
Google Scholar
[52]
C.D. Gu, M.L. Huang, X. Ge, H. Zheng, X.L. Wang, J.P. Tu, NiO electrode for methanol electro-oxidation: mesoporous vs. nanoparticulate. Int. J. Hydrogen Energy. 39 (2014) 10892-10901.
DOI: 10.1016/j.ijhydene.2014.05.028
Google Scholar
[53]
C. Xiang, M. Li, M. Zhi., A. Manivannan, N. Wu. A reduced graphene oxide/Co3O4 composite for supercapacitor electrode. J. Power Sources. 226 (2013) 65-70.
DOI: 10.1016/j.jpowsour.2012.10.064
Google Scholar
[54]
N.H. Khdary, M.E. Abdesalam, G. E. L Enany, Mesoporous polyaniline films for high performance supercapacitors. J. Electrochem. Soc. 161(2014) G63-G68.
DOI: 10.1149/2.0441409jes
Google Scholar
[55]
S. H. Aboutalebi, A. T. Chidembo, M. Salari, K. Konstantinov,D. Wexler, H. K. Liu, S. X. Dou, Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ. Sci. 4 (2011) 1855-1865.
DOI: 10.1039/c1ee01039e
Google Scholar
[56]
A. T. Chidembo, K.I. Ozoemena, B. O. Agboola, V. Gupta, G.G. Wildgoose, R. G. Compton, Nickel (II) tetra-aminophthalocyanine modified MWCNTs as potential nanocomposite materials for the development of supercapacitors. Energy Environ. Sci. 3(2010).
DOI: 10.1039/b915920g
Google Scholar
[57]
A. S. Adekunle, B. O. Agboola, J. Pillay, K.I. Ozoemena, Electrocatalytic detection of dopamine at single-walled carbon nanotubes–iron (III) oxide nanoparticles platform. Sens. Actuators B: Chem. 148(2010) 93-102.
DOI: 10.1016/j.snb.2010.03.088
Google Scholar
[58]
P. Bouvrette, S. Hrapovic, K. B. Male, J. H. Luong, Analysis of the 16 Environmental Protection Agency priority polycyclic aromatic hydrocarbons by high performance liquid chromatography-oxidized diamond film electrodes. J. Chromatogr. A. 1103 (2006).
DOI: 10.1016/j.chroma.2005.11.028
Google Scholar
[59]
G. Skandan, A. Singhal, C. I. Contescu, K. Putyera, K. Nanomaterials: Advances in technology and industry, in J.A. Schwarz (Ed) Dekker encyclopedia of nanoscience and nanotechnology, Taylor and Francis Group, New York, 2009, p.2788.
DOI: 10.1201/noe0849396397.ch240
Google Scholar
[60]
W. Li, C. Tan, M. A. Lowe, H. D. Abruna, D. C. Ralph, Electrochemistry of individual monolayer graphene sheets. ACS Nano 5 (2011): 2264-2270.
DOI: 10.1021/nn103537q
Google Scholar
[61]
K.E. Hammel, B. Kalyanaraman, T.K. Kirk, Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J. Biol. Chem. 261(1986) 16948-16952.
DOI: 10.1016/s0021-9258(19)75982-1
Google Scholar
[62]
F. Kodera, M. Umeda, A. Yamada, Detection of hypochlorous acid using reduction wave during anodic cyclic voltammetry. Jpn. J. Appl. Phys. 44(2005) L718.
DOI: 10.1143/jjap.44.l718
Google Scholar
[63]
E.S.Z. El-Ashtoukhy, N.K. Amin, Removal of acid green dye 50 from wastewater by anodic oxidation and electrocoagulation—A comparative study. J. Hazard. Mater. 179 (2010) 113-119.
DOI: 10.1016/j.jhazmat.2010.02.066
Google Scholar
[64]
D. Zheng, S. K. Vashist, M.M. Dykas, S. Saha, K. Al-Rubeaan, E. Lam, J.H. T Luong, F.S. Sheu, Graphene versus multi-walled carbon nanotubes for electrochemical glucose biosensing. Mater. 6(2013): 1011-1027.
DOI: 10.3390/ma6031011
Google Scholar
[65]
J. Björk, F. Hanke, C.A. Palma, P. Samori, M. Cecchini, M. Persson, Adsorption of aromatic and anti-aromatic systems on graphene through π− π stacking. J. Phys. Chem. Lett. 1(2010), 3407-3412.
DOI: 10.1021/jz101360k
Google Scholar
[66]
L. Ji, W. Chen, Z. Xu, S. Zheng, D. Zhu, Graphene nanosheets and graphite oxide as promising adsorbents for removal of organic contaminants from aqueous solution. J. Environ. Qual. 42 (2013) 191-198.
DOI: 10.2134/jeq2012.0172
Google Scholar
[67]
A.S. Adekunle, L. Seonyane, P. L. Gwala, T. P. Tsele, L. O. Olasunkanmi, E. O. Fayemi, D. Boikanyo, E. E. Ebenso, Electrochemical response of nitrite and nitric oxide on graphene oxide nanoparticles doped with Prussian blue (PB) and Fe2O3 nanoparticles. RSC Adv. 5(2015).
DOI: 10.1039/c5ra02008e
Google Scholar
[68]
S. Majdi, A. Jabbari, H. Heli, A. A. Moosavi-Movahedi, Electrocatalytic oxidation of some amino acids on a nickel–curcumin complex modified glassy carbon electrode. Electrochim. Acta. 52 (2007) 4622-4629.
DOI: 10.1016/j.electacta.2007.01.022
Google Scholar
[69]
A. J. Bard, L. R. Faulkner, Electrochemical methods: Fundamentals and Applications. second ed., John Wiley & Sons, Inc. (2001).
Google Scholar
[70]
E. I. Iwuoha, D. S. de Villaverde, N. P. Garcia, M. R. Smyth, J. M. Pingarron, Reactivities of organic phase biosensors. 2. The amperometric behaviour of horseradish peroxidase immobilised on a platinum electrode modified with an electrosynthetic polyaniline film. Biosens. Bioelectron. 12 (1997).
DOI: 10.1016/s0956-5663(97)00042-0
Google Scholar
[71]
S. N. Mailu, T.T. Waryo, P. M. Ndangili, F.R. Ngece, A. A. Baleg, P.G. Baker, E. I. Iwuoha, Determination of anthracene on Ag-Au alloy nanoparticles/overoxidized-polypyrrole composite modified glassy carbon electrodes. Sens. 10(2010) 9449-9465.
DOI: 10.3390/s101009449
Google Scholar
[72]
J.M. Zen, A. S. Kumar, M. R. Chang, Electrocatalytic oxidation and trace detection of amitrole using a Nafion/lead–ruthenium oxide pyrochlore chemically modified electrode. Electrochim. Acta. 45(2000) 1691-1700.
DOI: 10.1016/s0013-4686(99)00327-8
Google Scholar
[73]
J. N. Soderberg, A. C. Co, A.H. C Sirk, V. I. Birss. Impact of porous electrode properties on the electrochemical transfer coefficient. J. Phys. Chem. B. 110(2006) 10401-10410.
DOI: 10.1021/jp060372f
Google Scholar
[74]
B. O. Agboola, T. Nyokong, Comparative electrooxidation of nitrite by electrodeposited Co(II), Fe(II) and Mn(III) tetrakis (benzylmercapto) and tetrakis (dodecylmercapto) phthalocyanines on gold electrodes. Anal. Chim. Acta. 587 (2007) 116-123.
DOI: 10.1016/j.aca.2007.01.031
Google Scholar
[75]
A. J. Bard, L.R. Faulkner, Electrochemical methods: Fundamentals and Applications. Wiley, New York, (1980).
Google Scholar
[76]
G. D. Christian, Analytical chemistry, sixth edition, Wiley, (2004).
Google Scholar
[77]
C. Rassie, R. A. Olowu, T. T. Waryo, L. Wilson, A. Williams, P. G. Baker, E. I. Iwuoha. Dendritic 7T-polythiophene electro-catalytic sensor system for the determination of polycyclic aromatic hydrocarbons. Intern. J. Electrochem. Sci. 6 (2011).
DOI: 10.1016/s1452-3981(23)18158-2
Google Scholar
[78]
W.D. Wang, Y.M. Huang, W.Q. Shu, J. Cao, Multiwalled carbon nanotubes as adsorbents of solid-phase extraction for determination of polycyclic aromatic hydrocarbons in environmental waters coupled with high-performance liquid chromatography. J. Chromatogr. A. 1173 (2007).
DOI: 10.1016/j.chroma.2007.10.027
Google Scholar
[79]
H. Ju, D. Leech, Electrochemical study of a metallothionein modified gold disk electrode and its action on Hg2+ cations. J. Electroanal. Chem. 484(2000) 150-156.
DOI: 10.1016/s0022-0728(00)00071-1
Google Scholar
[80]
G. Avci, Corrosion inhibition of indole-3-acetic acid on mild steel in 0. 5M HCl. Colloids Surf. A: Physicochemical Eng. Aspects. 317 (2008) 730-736.
DOI: 10.1016/j.colsurfa.2007.12.009
Google Scholar
[81]
C. Ehli, G. M. Aminur Rahman, N. Jux ,D. Balbinot, D. M. Guldi, F. Paolucci, M. Marcaccio, D. Paolucci, M. Melle-Franco, F. Zerbetto, S. Campidelli, M. Prato, Interactions in Single Wall Carbon Nanotubes/Pyrene/Porphyrin Nanohybrids. J. Am. Chem. Soc. 128 (2006).
DOI: 10.1021/ja0624974
Google Scholar