Disruptive Inventions in Electroceramics

Article Preview

Abstract:

Disruptive inventions in electroceramics arose out of need for greatly improved properties or short-supply of existing materials, or, more importantly, serenpedity. In the case of ceramic capacitors, the key property of the material, dielectric constant, jumped from less than 10 (mica) to 100 (titania) to over 1000 (barium titanate ceramics) to over 10,000 (relaxor ferroelectrics) to over 100,000 (multilayer ceramics). The challenge for miniaturization demanded by integrated circuits was thus met. An excellent insulator such as barium titanate was converted into a good conductor by doping but the unexpected discovery was the abrupt increase in electrical resistivity over a million fold at the Curie temperature, opening new vistas of applications. The disruptive invention of superconductivity in oxide ceramics, that too at easily accessible, above liquid nitrogen, temperatures created unprecedented scientific efforts. The discovery of piezoelectric properties in lead zirconate titanate ceramics totally transformed the entire field of transducers, sensors and actuators. Mixing a piezoelectric ceramic powder and a polymer into a composite with controlled connectivity in 0, 1, 2 or 3 directions led to an unbelievable range of piezoelectric and electrostrictive properties and applications. Ceramics, noted for their opacity, have become endowed with superior electro-optic properties by magical alchemy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-97

Citation:

Online since:

March 2008

Authors:

Export:

Price:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

[1] G. H. Haertling in Ref.

Google Scholar

[2] p.139.

Google Scholar

[2] R. C. Buchanan, ed. Ceramic Materials for Electronics, Marcel Dekker, New York (1986).

Google Scholar

[3] H. W. Stetson in High Technology Ceramics: Past, Present and Future. Vol. III ed. W. D. Kingery, Am. Ceram. Soc. (1986) p.307.

Google Scholar

[4] Rosenberg, American Heritage of Science and Invention, 1 (3) (1986) p.44 cited in Ref.

Google Scholar

[5] B. Schwartz in Ref.

Google Scholar

[6] p.4.

Google Scholar

[6] L. M. Levinson, ed. Electronic Ceramics, Marcel Dekker, New York (1988).

Google Scholar

[7] J. Moulson and J. M. Herbert, Electroceramics, Chapman & Hall, London (1990) p.194, 228.

Google Scholar

[8] G. Goodman in Ref.

Google Scholar

[2] p.79.

Google Scholar

[9] E. Wainer and N. Salomon, Titanium Alloy Manufacturing Co. Elec. Report 8 (1942), 9 and 10 (1943).

Google Scholar

[10] A. von Hippel et al. NRDC Report 300 (August 1944) and 540 (October 1945); A. von Hippel, R. G. Breckenridge, F. B. Chesley and L. Tisza, Ind. Eng. Chem. 38 (1946) 1097.

DOI: 10.1021/ie50443a009

Google Scholar

[11] B. M. Vul and I. Goldman, Dokl. Akad. Nauk SSSR, 46 (1945) 154; B. M. Vul J. Phys. USSR 10 (1946) 95; V. Ginzburg, J. Exp. Theo. Phys. SSSR 15 (1946) 739.

Google Scholar

[12] S. Ogawa, J. Phys. Soc. Japan 1 (1) (1945) 32.

Google Scholar

[13] B. Jaffe, W. R. Cook, Jr. and H. Jaffe, Piezoelectric Ceramics, Academic Press, New York (1971).

Google Scholar

[14] E. C. Subbarao, Colloids and Surfaces 133 (1988) 3.

Google Scholar

[15] W. R. Buessem, L. E. Cross and A. Goswami, J. Am. Ceram. Soc. 49 (1966) 33.

Google Scholar

[16] P. Ward in Ref.

Google Scholar

[17] p.49.

Google Scholar

[17] B. C. H. Steele, Electronic Ceramics, Elsevier (1991).

Google Scholar

[18] G. Goodman, J. Am. Ceram. Soc. 36 (1953) 368.

Google Scholar

[19] B. Aurivillius, Arkiv Kemi 1 (1949) 463; 499, 2 (1950) 519.

Google Scholar

[20] G. A. Smolenskii, V. A. Isupov and A. I. Agranovskaya, Fiz. Tverdogo Tela 1 (1959) 169; 3 (1961) 895.

Google Scholar

[21] E. C. Subbarao, Phys Rev. 132 (1961) 804; J. Am. Ceram. Soc. 45 (1962) 166; J. Phys. Chem. Solids 23 (1962) 665.

Google Scholar

[22] D. C. Hill and H. L. Tuller in Ref.

Google Scholar

[2] p.265.

Google Scholar

[23] W. Heywang and H. Thomann in Ref.

Google Scholar

[17] p.29.

Google Scholar

[24] L. E. Cross and K. H. Hardtl, Encyclopaedia Chem. Tech 10 (1) (1980).

Google Scholar

[25] T. G. Bednorz and K. Muller, Z. Phys. B64 (1986) 189.

Google Scholar

[26] M. K. Wu, R. J. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang and C. W. Chu, Phys. Rev. Lett 58 (1987) 908.

Google Scholar

[27] H. Maeda, Y. Tanaka, M. Fukutomi and A. Asano, Japan J. Appl. Phys. 27 (1988) L209.

Google Scholar

[28] C. Michel, M. Herveu, M. M. Boral, A. Grandin, F. Deslandes, J. Provost and B. Raveau, Z. Phys. B68 (1987) 421.

Google Scholar

[29] Z. Z. Sheng and A. M. Hermann, Nature 332 (1988) 138.

Google Scholar

[30] M. A. Subramanian, C. C. Torardi, J. C. Calabree, J. Gopalakrishnan, K. J. Morrissey, T. R. Askew, R. B. Flippen, U. Chowdhry and A. M. Sleight, Science 239 (1988) 1015.

DOI: 10.1016/0921-4534(88)90728-9

Google Scholar

[31] E. C. Subbarao, J. Banavar, A. S. Bhalla, L. E. Cross, S. K. Kurtz, R. E. Newnham and R. Roy, Phase Transitions 22 (1990) 157.

DOI: 10.1080/01411599008207222

Google Scholar

[32] S. Roberts, Phys. Rev 71 (1947) 890.

Google Scholar

[33] G. Shirane and A. Takeda, J. Phys. Soc. Japan 7 (1952) 5, 12.

Google Scholar

[34] E. Sawaguchi, J. Phys. Soc. Japan 8 (1953) 615.

Google Scholar

[35] B. Jaffe, R. S. Roth and S. Marzullo, J. Appl. Phys. 25 (1954) 809; J. Res. Natl. Bur. Standards 55 (1955) 239.

Google Scholar

[36] H. Jaffe, Ind. Eng. Chem. 2 (1950) 264.

Google Scholar

[37] G. Haertling in Ref.

Google Scholar

[38] p.139.

Google Scholar

[38] Y. Xu, Dielectric Materials and Their Applications, North Holland (1991).

Google Scholar

[39] L. E. Cross, Am. Ceram. Soc. Bull 63 (1984) 586.

Google Scholar

[40] R. E. Newnham, D. P. Skinner and L. E. Cross, Mat. Res. Bull 13 (1978) 525, 599.

Google Scholar

[41] T. R. Gururaja, A. Safari, R. E. Newnham and L. E. Cross in Ref.

Google Scholar

[6] p.92.

Google Scholar

[42] A. Safari, F. Sa-gong, J, Giniewiez and R. E. Newnham, Proc. 21 st University Conf. Ceramic Science, Penn State Univ. 20 (1986) 443.

Google Scholar

[43] G. H. Haertling, J. Am. Ceram. Soc. 54 (1971) 303.

Google Scholar